• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About Us
  • Research
  • People
  • Publications
  • News
  • Contact Us

Vibration Control, Electromechanics and Flow Lab VCEF

Texas A&M University College of Engineering

Squeeze Film Damper Suppression of Thermal Bow Morton Effect

Shin, D., Palazzolo, A. , Tong, X.

December 2020

The Morton effect (ME) is a synchronous vibration problem in turbomachinery caused by the nonuniform viscous heating around the journal circumference, and its resultant thermal bow (TB) and ensuing synchronous vibration. This paper treats the unconventional application of the SFD for the mitigation of ME-induced vibration. Installing a properly designed squeeze film damper (SFD) may change the rotor’s critical speed location, damping, and deflection shape, and thereby suppress the vibration caused by the ME. The effectiveness of the SFD on suppressing the ME is tested via linear and nonlinear simulation studies employing a three-dimensional (3D) thermohydrodynamic (THD) tilting pad journal bearing (TJPB), and a flexible, Euler beam rotor model. The example rotor model is for a compressor that experimentally exhibited an unacceptable vibration level along with significant journal differential heating near 8000 rpm. The SFD model includes fluid inertia and is installed on the nondrive end bearing location where the asymmetric viscous heating of the journal is highest. The influence of SFD cage stiffness is evaluated.

 

Squeeze Film Damper Suppression of Thermal Bow Morton Effect

Recent Publications

  • An improved preloaded Curvic coupling model for rotordynamic analyses
  • Beam Based Rotordynamics Modelling for Preloaded Hirth, Curvic and Butt Couplings
  • CFD Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device
  • Swirl Brake Design for Improved Rotordynamic Vibration Stability Based on CFD System Level Modeling
  • Transient Rotordynamic Thermal Bow (Morton Effect) Modeling in Flexure-Pivot Tilting Pad Bearing Systems

© 2016–2025 Vibration Control, Electromechanics and Flow Lab VCEF Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment