• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About Us
  • Research
  • People
  • Publications
  • News
  • Contact Us

Vibration Control, Electromechanics and Flow Lab VCEF

Texas A&M University College of Engineering

A Review of Journal Bearing Induced Nonlinear Rotordynamic Vibrations

Kim, S., Shin, D., Palazzolo, A.

November 2021

Nonlinear elements found in fluid film journal bearings and their surrounding structures are known to induce sub- and super-synchronous, chaos and thermally induced instability responses in rotor-bearing systems. The current review summarizes the literature on journal bearing induced nonlinear, rotordynamic forces, and responses. Nonlinear, thermo-elasto-hydrodynamic (TEHD) aspects of journal bearings has become increasingly important in high-performance turbomachines. These have significant influence on bearing dynamic performance and thermally induced, rotordynamic instability problems. Techniques for developing TEHD bearing models are discussed in the second section. Nonlinear solution methodology, including bifurcation determination and time and frequency domain methods such as harmonic balance, shooting and continuation, etc., is presented in the third section. Numerical tools to determine nonlinear vibration responses, including chaos, along with examples of bearing induced nonlinear vibrations are presented in the fourth and fifth sections, respectively.

 

A Review of Journal Bearing Induced Nonlinear Rotordynamic Vibrations

Recent Publications

  • An improved preloaded Curvic coupling model for rotordynamic analyses
  • Beam Based Rotordynamics Modelling for Preloaded Hirth, Curvic and Butt Couplings
  • CFD Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device
  • Swirl Brake Design for Improved Rotordynamic Vibration Stability Based on CFD System Level Modeling
  • Transient Rotordynamic Thermal Bow (Morton Effect) Modeling in Flexure-Pivot Tilting Pad Bearing Systems

© 2016–2025 Vibration Control, Electromechanics and Flow Lab VCEF Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment