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Nonlinear elements found in fluid film journal bearings and their surrounding structures are
known to induce sub- and super-synchronous, chaos and thermally induced instability
responses in rotor-bearing systems. The current review summarizes the literature on
journal bearing induced nonlinear, rotordynamic forces, and responses. Nonlinear,
thermo-elasto-hydrodynamic (TEHD) aspects of journal bearings has become increasingly
important in high-performance turbomachines. These have significant influence on bearing
dynamic performance and thermally induced, rotordynamic instability problems. Techni-
ques for developing TEHD bearing models are discussed in the second section. Nonlinear
solution methodology, including bifurcation determination and time and frequency domain
methods such as harmonic balance, shooting and continuation, etc., is presented in the third
section. Numerical tools to determine nonlinear vibration responses, including chaos, along
with examples of bearing induced nonlinear vibrations are presented in the fourth and fifth
sections, respectively. [DOI: 10.1115/1.4049789]
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1 Introduction
Fluid film journal bearings are ubiquitous among the power, pet-

rochemical, and process industries as a result of superior load capac-
ity, high-speed operation, long life, high reliability, etc. This holds,
in spite of their physical complexity and potential to contribute sig-
nificant nonlinear (NL) forces to the rotating assembly system.
Fluid film bearing related characteristics such as self-excited oscil-
lations [1–4], thermoelastic expansion [5–8], and fluid inertia [9,10]
are known to induce nonlinear response states of the rotor system
such as sub-synchronous, quasiperiodic, aperiodic, and even
chaotic motions. Many researchers have contributed to this work
in terms of novel theoretical and computational methods, along
with experimentation. There has been a vast literature representing
fluid film bearings in a linear form, i.e., stiffness, damping, and
inertia dynamic coefficients [11]. System response characteristics
such as natural frequencies, critical speeds, mode shapes, and log
decrements are obtainable using the bearing dynamic coefficients
(BDCs) along with the rotor structural model. In addition, small
motion imbalance response can be predicted for response magni-
tudes smaller than the limits for the validity of the BDC force repre-
sentation. The imbalance response distribution is unique (single
valued) at a given speed and for a given imbalance distribution.
The responses occur at the rotor speed frequency, so are referred
to as synchronous responses. The validity of this result is limited
by the approximation of the bearing forces being linear functions
of journal displacement, velocity, and accelerations. In fact, the
forces are nonlinear NL functions of these variables which may
produce responses that radically differ from the linear system
responses. Imbalance responses can then become multivalued
(coexisting solutions) depending on initial conditions, sub or super-
harmonic, quasiperiodic, or chaotic. Linear system stability analysis
utilizes eigenvalues and log decrements to indicate whether a given
equilibrium state is stable or unstable for small perturbation of states
in the neighborhood of the equilibrium state. Linear system stability

analysis predicts an infinite response as time goes to infinity if the
equilibrium state is unstable (negative log decrement, positive
real part of eigenvalue). In actuality, responses remain finite in a
bounded “limit cycle” (LC) in state space, which may be one of
multiple coexisting limit cycles, as the nonlinear part of the bear-
ing’s force dominates with increasing amplitudes. Adding to the
complexity of the NL response, coexisting imbalance and LC
responses may appear or disappear as some system parameter
such as speed or imbalance level is varied. This gives rise to a
wide array or bifurcation behaviors, the most familiar of which is
a “jump” bifurcation where the disappearance of an equilibrium
state forces the system to “jump” to a remaining coexisting equilib-
rium state. Note that the term equilibrium state may refer to an
orbital motion as well to a fixed point.
A popular approach to simulate nonlinear systems is to use brute

force transient numerical integration (TNI), commonly with some
form of Runge–Kutta method. The integration begins with a user
selected state of initial values and proceeds until a periodic state
is reached or until the system is judged to be aperiodic or chaotic.
The nonlinear bearing forces are state dependent and are updated
every predetermined number of integration time-steps, i.e., every
time-step, every 2 time-steps, etc. The forces are evaluated from
the instantaneous state variables using functional forms, look up
tables or from independent codes that solve for bearing forces by
integrating pressures that are obtained from the solution of Rey-
nolds or Navier–Stokes equations. The transient nonlinear integra-
tion to steady-state (TNISS) method is easy to use and powerful to
capture NL characteristics by providing journal orbits, frequency
components, bifurcation diagrams, Poincaré sections, Lyapunov
exponents (LEs), etc. Therefore, many publications including Adi-
letta et al. [12], Holt et al. [13], Tian et al. [14,15], and Schweizer
[3] and many others utilize this approach.
The weakness of the TNISS method is its inability to locate mul-

tiple coexisting solutions in a computationally efficient manner. For
instance, if an n state system had the expected range of each initial
condition state divided into m points, nm separate numerical integra-
tion (NI) solutions to steady state would be needed to search this
initial condition grid for multiple coexisting, steady-state solutions.
A 20 degrees-of-freedom (DOF) rotor model has n= 40, each of
which for the sake of illustration is divided into m= 8 initial
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condition points. Then, 408= 6.5 × 1012 TNISS would be required
to cover all points on the initial condition grid. Even in this case,
m may not be large enough to identify the coexisting equilibrium
states. The importance of determining the coexisting solutions can
in some instances not be overstated. The reason is that a system
could “jump” from a benign solution to a potentially destructive
solution in response to an impact (bump) or other upset condition.
In addition, TNISS will never converge to an unstable “repellor”
coexisting solution. This may appear irrelevant however repellors
typically provide boundaries for domains of attraction for stable
solutions.
In contrast, a direct search algorithms (DSA) approach uses an

algorithm-directed search to determine all possible coexistent
response states. DSA can be roughly categorized into two general
approaches: the assumed periodic approximate form (APAF) and
the assumed periodic numerically integrated form (APNIF). The
harmonic balance method (HBM) is an APAF approach and was
applied to find synchronous and sub-synchronous response state
of rotor systems with stator rubs and squeeze film dampers, respec-
tively, in Refs. [16–19]. HBM can be combined with arc-length
continuation to extend solution branches over varying system
parameters in a rotor/stator contact problem, as in Ref. [20]. The tri-
gonometric collocation method (TCM) is a second APAF approach
that was utilized along with component mode synthesis (CMS) to
calculate periodic responses of a multi-disk rotor system with a
squeeze film damper in Refs. [21,22]. The APAF approach substi-
tutes an assumed response and NL force, expressed in terms of a
truncated series of sinusoidal harmonics, into the governing, nonlin-
ear differential equations. The results, after combining like terms
and enforcing linear independence, are a set of coupled nonlinear
algebraic equations, with the same or more equations than
unknowns. This approach is very effective in obtaining approximate
forms for the coexisting solutions; however, it may become cumber-
some in cases where the nonlinear forces have highly complicated
forms or can only be expressed numerically. Determining the stabi-
lity of the solutions may also become very challenging and require
applying Floquet theory to sets of coupled, linear differential equa-
tions with periodically varying coefficient expressions.
The most common form of the APNIF approach is the shooting

method, which is a numerical approach to solve two-point boundary
value problems, and has been used to predict response states of non-
linear rotor systems. The objective of the shooting approach is to
iteratively determine periodic solutions, resulting from periodic
excitations or from limit cycle motions, by enforcing the condition
that the state vector has the same value both at the beginning and at
the end of a period of oscillation. Sundararajan and Noah developed
a nonautonomous shooting approach with arc-length continuation
and CMS to apply to flexible rotor systems with nonlinear
squeeze film dampers and journal bearings [23,24]. An added
benefit of the shooting method is that the eigenvalues of the shoot-
ing method’s Jacobian matrix, corresponding to a converged peri-
odic solution, directly provide a means to determine the stability
of the solution, namely, if any eigenvalue magnitude exceeds 1,

the solution is a repellor (unstable). Table 1 summarizes the differ-
ent solution methods and related research examples.
Considerable experimental work has been performed related to

nonlinear bearing forces and response. Tests have been reported
on a variety of journal bearings widely used in industry, including
plain journal bearings (PJBs), multi-pad tilting pad journal bearings
(TPJBs), and floating ring bearings (FRBs). An early example was
the oil whip/whirl experiments conducted by Newkirk and
Taylor [25] in 1925. More recent publications involve more
sophisticated experiments and corresponding simulations. Mon-
mousseau et al. [26] performed experiments on the transient tem-
perature distribution of a four pad TPJB during start-up, utilizing
a thermo-elasto-hydrodynamic model for comparison. Forty ther-
mocouples were installed on a journal and bearing to measure
their temperature distributions, including the oil feed temperature.
The measurements showed a rapid increase of pad temperature
during the first 60 s and then a relatively slow increase after 120 s
of operation.
Comparison with a prediction model showed reasonable agree-

ment especially when the thermoelastic effect of pads was included
in the simulations. Monmousseau et al. [38] conducted experimen-
tal work to validate their bearing seizure prediction model. Two
start-up times of duration 3.5 s and 4.5 s were used, and the tem-
peratures on the internal pad surface were measured with static
loads of 0 N and 10,000 N. The comparison with the prediction
results showed good agreement in both transient and steady-state
tests. Kucinschi and Fillon [39] conducted an experimental study
on the transient thermal characteristics in a plain journal bearing.
The measured data revealed that an operating time of about 600 s
was required to reach thermal steady-state conditions. The
bearing temperatures increased with bearing load due to reduced
axial oil flow. Table 2 presents some notable bearing experimental
work in the literature.
The Morton effect (ME) is a thermally induced instability pro-

blem, which is typically observed in the rotor with overhung
masses and supported by fluid film bearings. The large synchronous
bearing whirl orbits resulting from the ME produce NL forces. Con-
siderable effort has been devoted to accurately predict the ME for
several decades. De Jongh and Morton [41] constructed a simplified
rotor model to simulate the ME instability in original machines. The
overhung mass was installed only at a non-drive end, and four tem-
perature sensors were placed on 1.3 mm below the journal surface.
From the test, they identified the ME instability which is character-
ized by spiral synchronous component vibrations, and high journal
temperature differential, measured to be approximately 10 °C at
11.2 krpm. Balbahadur [42] measured a large vibration near the
third critical speed (8 krpm), which could not be suppressed with
balancing. Vibration amplitude hysteresis was observed during
run-up and run-down operations, consistent with known ME symp-
toms. Journal temperature differential was not measured in the
experiment. Panara et al. [43] built a ME testing rig to verify
their simplified ME prediction method. Eight temperature sensors
were installed on the journal circumference to measure the journal

Table 1 Comparisons of different solution methods

Transient numerical
integrations

Harmonic balance
method

Trigonometric collocation
method Hopf bifurcation theory Shooting method

Categories Integration method Approximate method Approximate method Approximate method Approximate method
Route to orbital
steady states

Transient, initial
value problem

Direct, algebraic
problem

Direct, algebraic problem Direct, boundary value
problem

Direct, boundary value
problem

Domain Time Frequency Time and frequency Time Time
Multiple
coexistent
solutions

No Yes Yes Yes Yes

Research
examples

Adiletta et al. [12],
Suh and Palazzolo
[7,8]

Groll and Ewins [20],
Zhao and Hahn [27]

Nataraj and Nelson [21],
Chinta and Palazzolo [28]

Wang and Khonsari
[29–33], Boyaci et al.
[34]

Sundararajan and Noah
[23,24], Kim and Palazzolo
[35–37]
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temperature differential. Their work showed that the speed range of
the ME instability is related to the shift of the overhung critical
speed. Tong and Palazzolo [44] conducted an experiment to
compare with their ME prediction method. They spun a shaft
with an intentionally eccentric journal to impose a 0.003 in. circu-
lar, synchronous whirl orbit in the TPJB. The journal temperature
distribution was measured with 20 resistance temperature detectors
(RTDs) embedded near the journal surface and routed through a slip
ring. The results showed a relatively high journal temperature dif-
ferential of 5 °C at 5500 rpm, and the results from their ME predic-
tion approach provided better prediction accuracy compared with
simplified algorithms. Plantegenet et al. [45,46] recently presented
a series of experiments for ME utilizing PJB and flexure pivot
TPJB. Thermocouples were installed in the journals and bearings
to measure temperatures. They revealed that rig run-up time could
significantly influence the thermally induced rotordynamic
instability.
Thermo-elasto-hydrodynamic interaction is a source of nonline-

arity in a rotordynamic system. Other factors that contribute to non-
linearity are listed below.

1.1 Porous Pad. The nonlinear behavior of the porous tilting
pad journal bearing (PTPJB) is discussed in Ref. [50]. Unlike a stan-
dard TPJB, the PTJB is provided with externally pressurized gas to
the clearance between the journal and pads, and therefore benefits
from both hydrostatic and hydrodynamic actions. Both the TPJB
and PTPJB cases were numerically simulated, and it was verified
that the PTPJB improves the system stability by suppressing sub-
synchronous vibration, typically observed when the TPJB operates
above critical speeds.

1.2 Surface Roughness. The surfaces of the journal and
bearing are inherently rough due to the limitations of the manufac-
turing techniques, and this aspect affects the dynamic response of a
system. Ramesh and Majumdar [51] examined the effect of the
surface roughness and its pattern on the stability of a rigid rotor.
The stability of the rotor varied with different roughness patterns
and ratios on both journal and bearing surfaces, and the degree of
the variation depended on the bearing L/D ratio. Turaga et al.
[52] studied the surface roughness effect on the transient stability
of a rotor, modeled with a finite-length journal bearing model.
Fourth-order Runge–Kutta method was used to obtain the numeri-
cal solutions, and the results showed that the stability is enhanced
with transverse roughness patterns and reduced with a longitudinal
roughness pattern. Lin [53,54] used Hopf bifurcation theory (HBT)
to obtain the weakly nonlinear bifurcation responses of a short
journal bearing with transverse and longitudinal rough surfaces.
Their results show that the effects of longitudinal roughness
increase the stability region and reduce the size of subcritical and
supercritical limit cycles. The effect of transverse surface roughness
was reported to have the opposite effects.

1.3 Pivot Design. Suh and Palazzolo [7,8] conducted a
Morton effect simulation with different pivot stiffness of a TPJB.

Tong and Palazzolo [55,56] investigated the effect of the TPJB’s
pivot stiffness Morton effect analysis with a double overhung
rotor and verified that pivot flexibility plays a significant role in
accurately predicting the vibration responses caused by the
Morton effect.

1.4 Actively Lubricated Tilting Pad Journal Bearing. Hau-
gaard and Santo [57] applied a transient EHD analysis to an actively
lubricated TPJB application. A flexible pad was modeled with a
finite element method and integrated into a TPJB dynamics
model with a pseudo modal reduction technique. Oil is actively
injected through orifices located on the pad to influence static eccen-
tricity, dynamic coefficients, and mitigation of nonlinear responses.

1.5 Non-Newtonian Journal Bearing. Zhang et al. [58],
Zhang and Cheng [59], and Zhang [60] performed trainset thermo-
hydrodynamic (THD) and TEHD on a dynamically loaded non-
Newtonian journal bearing, operating in a mixed lubrication
regime. The authors utilize a nonlinear shear stress-velocity gradi-
ent power law. Their model includes a one-dimensional surface
roughness model applied in the longitudinal and transverse direc-
tions. It was found that the surface roughness of a journal and a
bushing increases an oil temperature oscillation cycle and also
decreases the average heat absorption cycle into the shaft [58]. It
was also verified that the temperature distribution in a bearing is
quite sensitive to the asperity contact level [60].

1.6 Pad Rubbing. Tofighi-Niaki et al. [61] investigated the
nonlinear responses related to a rub between a journal and its
bearing, in mixed lubrication. The rubbing phenomenon was con-
sidered in the TPJB model by modeling the surface roughness of
both journal and bearing pads. The contact force between two
rough surfaces, which is caused by the rubbing, was calculated
based on the Hertz contact theory. The rotor response is presented
with phase plane orbits, Poincaré maps, waterfall plots, and bifurca-
tion diagrams and shows subharmonic, quasiperiodic, and chaotic
motions. The authors state that abrupt increases and decreases in
the impact force lead to qualitative changes in the rotor response.
This implies that bifurcations may occur between two coexisting
solutions, following an impact.

1.7 Herringbone Groove Bearing. The herringbone groove
bearing has advantages over a plain journal bearing, namely in
reducing side leakage and being free from whirl instability. Jang
and Yoon [62] examined the dynamic characteristics of the herring-
bone groove bearing, solving Reynolds equation with finite element
method (FEM). They verified that for the grooved journal case there
exists excitation frequencies which corresponds to the operating
speed multiplied by the number of grooves. Wang et al. [63] per-
formed a numerical study of the nonlinear response attributed to a
herringbone groove gas bearing and confirmed the existence of
the periodic and quasiperiodic motions. Wang et al. [64] used com-
putational fluid dynamics (CFD) and FEM techniques to consider

Table 2 Comparisons of experimental works in nonlinear bearing

Source of
nonlinearity Hydrodynamic instability Thermally induced instability Disc mass unbalance Rub, friction

Types of nonlinear
response

Oil whirl; oil whip Morton phenomena, divergence Chaos; aperiodic
response

Sub-synchronous,
quasiperiodic, aperiodic

Research groups Newkirk and Taylor [25],
Deepak and Noah [40]

De Jongh and Morton [41], Balbahadur
[42],
Panara et al. [43], Tong and Palazzolo
[44], Plantegenet et al. [45,46]

Adiletta et al. [12],
Mondy [47]

Lu et al. [48], Chu and Lu [49]

Bearing types Plain journal bearing Plain journal bearing, tilting pad journal
bearing

Plain journal bearing Tilting pad journal bearing
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the fluid-structure interactions of the bearing. They demonstrated
the improved dynamic stability of the herringbone groove gas
bearing over the plain gas bearing.

1.8 Non-Newtonian Fluid. Newtonian lubricant is often
mixed with an additive to adjust the bearing performance, produc-
ing a nonlinear relationship between the shear strain rate and shear
stress. Sinhasan and Goyal [65] compared linear and nonlinear
approaches to investigate the dynamic stability characteristics of a
plain journal bearing with non-Newtonian fluid. They demonstrated
how a linear lubricant bearing model yielded stable response,
whereas the full nonlinear bearing model resulted in an instability
(limit cycle). Jagadeesha et al. [66] analyzed the combined impact
of the three-dimensional (3D) surface roughness and the non-
Newtonian lubricant and showed that the non-Newtonian fluid
reduces the minimum film thickness ratio compared with the New-
tonian fluid. Kushare and Sharma [67] examined the effect of the
non-Newtonian fluid on the dynamic stability of the worn hybrid
journal bearing. They proved that the nonlinear non-Newtonian
fluid has a very significant effect on the vibration orbits and
system stability, especially under low load conditions.

1.9 Turbulence in the Bearing Fluid Film. Increasing needs
for high rpm and usage of low viscosity lubricants has resulted in
operating machinery with considerable turbulence in their hydrody-
namic bearings. Hashimoto et al. [68] verified that turbulence in a
fluid film bearing had a considerable effect on rotordynamic stabi-
lity, utilizing short bearing theory and a turbulence coefficient for
the bearing modeling.
Wang and Khonsari [29] applied HBT to obtain analytical

expressions for the dynamic coefficients considering turbulence
and showed that turbulence has a significant impact on the threshold
speed of stability when the Sommerfeld number is lower than 0.3.
Okabe and Cavalca [69] used short bearing theory to investigate
the effect of turbulence on the dynamic behavior of a rigid rotor sup-
ported on tilting pad journal bearings. They demonstrated that tur-
bulence effects modify the journal locus compared with the laminar
condition model, and this trend was most evident at higher operat-
ing speeds. In addition, they showed that increasing the number of
pads to 10 or 12 yielded a Hopf bifurcation into a limit cycle.
The remainder of this paper is arranged into the following

sections: Sec. 2 provides sources and modeling methods for nonlin-
earity in bearings, Sec. 3 introduces solution methods and pro-
gramming techniques for NL rotordynamics, Sec. 4 provides a
summary of some presentation tools for NL phenomena in rotor-
bearings, Sec. 5 provides examples that illustrate concepts intro-
duced in the review paper and Sec. 6 summarizes and discusses
future work.

2 Nonlinear Modeling of
Thermo-Elasto-Hydro-Dynamic Bearing
Thermal and elastic effects in a journal bearing may have a sig-

nificant influence on the overall rotordynamic response of a
machine by modifying the thin fluid film thickness, lubricant visc-
osity, etc. In addition, time-varying aspects of the coupled thermal
state of the fluid film, shaft and bearing structures can also cause
thermally induced, synchronous instability (Morton effect). Due
to its potentially high impact on rotor-bearing system response,
TEHD aspects of the nonlinear journal bearing have been exten-
sively researched for various applications, i.e., engine bearing,
Morton effect, bearing seizure, etc.

2.1 Engine Bearing. Transient TEHD simulation approaches
were widely developed in engine bearing applications [70–74],
which involves a deformable connecting rod structure and is typi-
cally subject to high dynamic loading. Piffeteau et al. [74]
researched the thermoelastic deformation effect on a connecting

rod bearing using a two-dimensional (2D) finite element model of
the rod. Two different thermal boundary conditions (adiabatic and
isothermal conditions) were imposed on the outer surface of the
connecting rod, and large differences between two cases in bearing
performances resulted. This confirmed a necessity for TEHD mod-
eling for engine bearing simulations. Kim and Kim [73] investigated
transient TEHD responses of the connecting rod bearing model
using a 3D finite element model. They found that thermal deforma-
tion is as important as elastic deformation in bearing performance
prediction including minimum film thickness and oil flowrate.
Fatu et al. [72] conducted transient TEHD engine bearing simula-
tions and applied a new modeling approach for the temperature
prediction of a fluid film using a second-order polynomial approx-
imation for film temperatures. The predicted temperature using
the method was validated with experimental results.

2.2 Morton Effect. The ME is a thermally induced instability
problem which is caused by thermal bow of a shaft, resulting from
viscous heating of the journal by the lubricant. A TEHD model is
essential for simulating the Morton effect. Childs and Saha [75]
and Lee and Palazzolo [76] used a 2D energy equation to develop
a numerical model to predict the ME instability. Later, Suh and
Palazzolo [7,8] demonstrated that using the 2D energy equation
for film temperature prediction overpredicts the peak journal tem-
perature differential when as compared with a 3D energy equation
model. They further advanced their nonlinear transient ME predic-
tion approach for a single overhung-shaped rotor, with the inclusion
of the 3D energy equation, an asymmetric thermal expansion of the
shaft, and thermal expansion of the TPJB pads. The numerical
model was validated by comparison with available ME case histo-
ries, and demonstrated that thermal expansion effects significantly
influence the ME. Tong and Palazzolo [77] used a hybrid beam-
solid element method of the journal area as illustrated in Fig. 1,
for thermal bow prediction resulting from asymmetric journal
heating. They expanded their prediction model to cover ME prob-
lems arising in double overhung rotors and gas bearing applications
[55,56,78]. Numerous parametric studies including bearing radial
clearance, overhung mass, supply oil temperature, etc. were con-
ducted to show their effects on the ME.

2.3 Bearing Seizure. Another thermally induced problem for
rotors supported by hydrodynamic bearings is bearing seizure
caused by an excessive reduction of bearing clearance due to the
thermal expansion. Transient TEHD simulation is required for
seizure prediction since the problem is typically observed during
a rotor start-up condition. Monmousseau et al. [38] conducted a
transient TEHD simulation of a TPJB under a rapid acceleration
condition. They verified the accuracy of their model with experi-
mental results and found that thermal expansion of the shaft is the
main cause for bearing-journal seizure. The locations of minimum
film thickness were found to be near the pivot positions due to
the thermal expansion of the shaft. Monmousseau and Fillon [79]
used simulation models to show that rotor acceleration rate is the
critical factor for safe operation, free from seizure. Their results
exhibited stable dynamic response of the rotor with slow accelera-
tion, while a rapid decrease of bearing clearance was observed with
higher rotor acceleration.

2.4 Governing Fluid, Thermal and Elastic Bearing
Equations With Nonlinear Terms. Numerous modeling
approaches have been used to obtain the hydrodynamic force of a
fluid film bearing. A generalized Reynolds equation coupled with
an energy equation is typically used to consider the thermal
effect. The Reynolds equation is formed from the fluid momentum
and continuity laws, and is used to predict pressure and velocity dis-
tributions in the fluid film. Equations (1) and (2) provide a common
form of the Reynold’s equation. This form neglects fluid inertia/
shaft curvature, and considers an incompressible Newtonian fluid
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with variable fluid viscosity. The derivation assumes a laminar flow,
uniform pressure distribution in the direction of film thickness,
constant fluid density, and temperature-governed variable viscosity.
Note that the bearing is assumed stationary, while the shaft surface
velocity has the tangential and axial components [ωR, 0], respec-
tively

∇ · (C1 ∇P) +∇D2 · U + ∂h/∂t = 0 (1)

where R is the journal radius, and C1 and C2 are constants related
with the variable viscosity μ

C1 =
∫h
0

∫z
0
(ξ/μ)dξdz − C2

∫h
0
(ξ/μ)dξ,

C2 =
∫h
0

∫z
0
(1/μ)dξdz/

∫h
0
(1/μ)dξ

(2)

where z is the axial coordinate of the fluid film bearing.

2.5 Thermal Effect and Modeling. The temperature distribu-
tion of a fluid film bearing plays a crucial role in accurately predict-
ing the nonlinear dynamics of a rotor-bearing system since the
variable lubricant viscosity coupled with the fluid film temperature
affects the hydrodynamic force and the performances of the fluid
film bearing. In addition, for Morton effect analysis, the fluid film
temperature variation affects the thermal bow amplitude of the
rotor, which may cause thermally induced vibration in the system.
Great efforts have been devoted to investigating the thermal effect
on the nonlinear behavior of rotor-bearing systems. Paranjpe and
Han [70] conducted a transient THD simulation of a PJB subjected
to dynamic loads, and using a full 3D energy equation and an Elrod
cavitation algorithm. They analyzed the thermal time scales of a
fluid film, a journal, and a bearing bushing and found that the
time scales of the journal and the bushing are much greater than
that of the fluid film. Paranjpe [71] compared two computationally
efficient transient THD approaches: an adiabatic and a simplified
thermal. The effective oil temperature was estimated considering
power loss, oil mass flowrate, and temperatures at the inlet and
outlet. It was shown that both the adiabatic and simplified models
yield quite accurate predictions, with low computational costs.
Gadangi and Palazzolo [80] and Gadangi et al. [81] performed a
transient THD analysis of a tilting pad journal bearing (TPJB)
using a 2D energy equation by calculating steady-state solutions
for fluid temperature at each time-step. They verified that an isother-
mal fluid film model may produce significant errors in rotor-bearing
response predictions, in particular for orbit size and minimum film
thickness, by comparison with their THD model results. Monmous-
seau et al. [82] investigated transient thermal effect for a TPJB
under dynamic loading conditions. They showed that the period
of thermal transient process is much greater than that of mechanical

transient, and it depends on the amplitude of the applied dynamic
load. The difference between the periods is more significant when
the amplitude of a dynamic load exceeds that of a static load. Mon-
mousseau and Fillon [83] evaluated the frequency effect of a
dynamic load and verified the existence of the thermal transient
regime based on theoretical works. Simulated bearing temperature
and dynamic response fluctuations became more evident with
higher dynamic force frequencies.
Accurate prediction models of the thermal effect are highly

desired for transient rotordynamic simulations, considering the
high impact of fluid film temperature on bearing force predictions.
A form of the energy equation is used in TEHD models to obtain
the fluid film temperature distribution. Fluid film velocities are
required to solve the energy equation, and are obtained from the
Reynolds equation solution for pressures. The energy equation
and Reynolds equation are coupled by the fluid velocities and
by the variable viscosity term which is a function of fluid film
temperatures. Various simplified forms of the energy equation
have been proposed to calculate fluid film temperatures, due to
the high computational costs of solving the energy equation in a
transient simulation.
Fatu et al. [72] utilized a simplified energy equation for engine

bearing modeling, by assuming a parabolic film temperature distri-
bution along the film thickness direction. The second-order polyno-
mial form of temperature approximation was used and compared
well with experimental measurements. Paranjpe [71] presented a
single effective viscosity method to simplify the THD analysis of
an engine bearing model. The effective viscosity was obtained
from the power loss, the mass flowrate of the oil and the pad’s
inlet and outlet temperatures. The viscosity value was obtained
via an iterative method, and comparison between the simplified
model and the 3D energy equation revealed that the suggested
method can predict the film temperature reasonably well for the
main bearing compared with the connecting rod, which has a
very low oil supply through the oil feed hole in the journal.
Fillon et al. [84] developed another single effective viscosity
method which defines the effective temperature of a fluid film as
a function of the oil temperature increase, and the film temperature
at the leading edge. The effective viscosity model tended to over-
predict the journal orbit size and maximum pressure. A simplified
1D energy equation was used in the nonlinear bifurcation analysis
of a floating ring bearing by Kim and Palazzolo [85], in order to
improve computational efficiency. The simplified energy equation
was used to conduct a time-consuming nonlinear bifurcation analy-
sis, by neglecting the temperature gradients in the axial and film
thickness directions in order to reduce computation time. The Trigo-
nometric Collocation Method was also implemented to obtain the
lubricant temperatures.
The full 3D energy equation including temperature gradients in

all of the journal’s circumferential, axial, and radial directions
ensures the most accurate prediction results in transient THD simu-
lations. The energy equation in Eq. (3) is solved using the finite

Fig. 1 Diagram of hybrid beam-solid element method for thermal bow prediction [77]
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element or other computational method, to obtain the 3D tempera-
ture distribution T in the fluid film

ρc u
∂T
∂x

+ w
∂T
∂z

( )
= k

∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z2

( )
+ μ

∂μ
∂y

( )2

+
∂w
∂y

( )2
[ ]

(3)

where ρ, c, and k represent density, heat capacity, and heat conduc-
tivity, respectively, and u, v, and w represent the fluid velocities in
the circumferential, film thickness, and bearing axial directions,
respectively. Mixing theory is typically utilized to obtain approxi-
mate pad inlet temperatures for boundary conditions on the
energy equation. Paranjpe and Han [70] utilized the 3D energy
equation for engine bearing research, and emphasized the necessity
of including the time-dependent film thickness. Suh and Palazzolo
[7,8] further improved the accuracy of the thermal effect model by
using the 3D energy equation and incorporating the time-dependent
thermal expansion of pads and shaft in the film thickness calcula-
tion. A quadratic up-winding scheme was used to avoid spatial tem-
perature oscillations due to the convection term.
The use of the 3D energy equation was expanded to transient ME

simulation of a gas bearing-supported rotor in Tong and Palazzolo
[78]. This required a different variable viscosity form in the
energy equation. The 2D Energy equation [38,58–60,73,75,76,
80–84,86,87] presents a good alternative for the 3D Energy equa-
tion to reduce the complexity of model and the computation time.
In the 2D version, the temperature gradient in the bearing’s axial
direction is neglected, and the film temperature is predicted at the
bearing mid-plane. However, as demonstrated by Suh and Palaz-
zolo [7,8], when it is used for the ME prediction, the 2D version
overpredicts the journal temperature differential in the circumferen-
tial direction significantly compared with the 3D version.

2.6 Bearing’s Elastic and Thermal Deformation Effect and
Modeling. The deformation of bearing pads induced by elastic and
thermal effects also has a direct impact on the nonlinear responses
of a rotor system. Suh and Palazzolo [7,8] incorporated a flexible
pad effect into the TPJB model and showed that the elastic pad
effect induces a relatively larger orbit size and increased
maximum fluidic pressure. Fillon et al. [84] compared both the tran-
sient THD and TEHD simulation models and verified that consider-
ing only thermal effect may overpredict the journal orbit size and
the maximum pressure of the TPJB. In their research, the thermal
expansion effect was also considered, and the effect was found to
be more dominant in the bearing performance compared with the

elastic deformation effect in the low dynamic load case. Monmous-
seau et al. [26] showed good agreement between experimental
results and a TEHD TPJB model, including fluid film thermal
effect, thermal and elastic deformations of pads, and pivot deflec-
tion. It was confirmed that more accurate predictions can be
achieved when both the thermal and elastic deformations are con-
sidered compared with the thermal effect only case. Kucinschi
et al. [86] analyzed the thermal transient of a steadily loaded
plain journal bearing using the thermoelastic deformation model.
The prediction model was compared with the experimental
results, and reasonable agreement between two were observed.
One-dimensional (1D) analytic, 2D, and 3D FEM methods have

been used for including the pad’s elastic deformation effect in the
transient EHD analysis. Monmousseau et al. [26] adopted the ana-
lytic method for calculating the pad deformation based on the plane
strain hypothesis by Nilsson [88]. In the method, the pad deforma-
tion in pad’s radial direction is calculated based on the hydrody-
namic pressure imposed on the pad’s inner surface. To
incorporate more detailed pad deformation model into the bearing
model, Desbordes et al. [89] suggested a 2D plane strain finite
element (FE) model. For this approach, the fluid’s pressure force
was obtained by solving Reynolds equation, and averaged along
the bearing axial direction. The force was then applied on the pad
inner surface as a boundary condition. A 3D elastic pad model
was utilized in the actively operated TPJB model of Haugaard
and Santos [57] and the ME—TPJB model of Suh and Palazzolo
[8]. The latter incorporated the stiffness and damping matrix of
the pad into the bearing dynamics model, and numerically inte-
grated the coupled equations for the pads and rotor in the time-
domain, using the Runge–Kutta method. This approach removes
the Newton–Raphson (NR) iteration process for determining the
static equilibrium positions of the journal and pads but requires
more computation time for the numerical integration. They
adopted a modal reduction technique to reduce the computational
costs.
Another important aspect that has a significant, but indirect,

effect on the nonlinear behavior of the rotor system is the thermal
expansions of the shaft and bearing pads. Monmousseau et al.
[38] verified that thermal expansion has a more dominant effect
than elastic deformation in bearing seizure prediction. Monmous-
seau et al. [26] included the thermal expansion effect of the shaft,
the pads, and the housing in the radial direction. The radial expan-
sion of the structures was obtained utilizing plane stress models and
assuming that the pad freely expands. More rigorous thermal expan-
sion models using 3D FE models of the pads and the shaft were
developed by Suh and Palazzolo [7,8] for ME modeling as shown

Fig. 2 3D FE model of TPJB Pads
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in Fig. 2. The thermal expansions of the shaft and bearing were
determined by solving the 3D FE model stiffness equation as

[KΔT ][DΔT ] = [FΔT ] (4)

where DΔT is the nodal displacement vector in the x, y, and z direc-
tions resulting from the thermal load vector FΔT. The latter is gen-
erated from the shaft and bearing temperature distributions. In the
method, the nodes at the shaft ends were set to feely move in the
axial direction. The displacements due to thermal expansion were
obtained at each 3D node, and applied for updating the film thick-
ness, to consider the asymmetric thermal expansion of the shaft in
both the circumferential and axial directions.

2.7 Bearing Boundary Conditions. Pressure boundary condi-
tions are imposed on the finite-length bearing model’s FEM mesh
according to the particular bearing configuration. An example for
pressure boundary conditions is shown in Fig. 3. A half symmetry
fluid film pressure distribution is typically assumed, when the
thermal effect is excluded in the bearing model. Therefore, only
one half of the bearing is meshed in the figure. The symbols z
and Θ represent the bearing axial and circumferential directions,
respectively, and L, ΘB, and ΘE are the bearing length, and the
beginning and end angular positions of the bearing pad, respec-
tively. Pressure boundary conditions are applied to the bearing
axial end (z= 0) and bearing side surfaces (Θ=ΘB, Θ=ΘE).
The pressure boundary conditions can apply ambient pressure, oil

supply pressure, or pressure continuity in a plain journal bearing.
Thermal boundary conditions are also required for THD and
TEHD bearing models. The thermal boundary conditions used in
the ME research [7,8] is presented in Fig. 4. Boundary conditions
are imposed for the interfaces between the lubricant and bearing
pad/journal surfaces.
The heat flux and temperature boundary conditions are applied

between the lubricant and the bearing pad, and are shown in Eq.
(5). For the lubricant/journal interfaces, the rotational motion of
the shaft needs to be accounted for and the boundary conditions
are shown in Eq. (6)

kL
∂TL
∂r

∣∣∣∣
r=R+H

= kB
∂TB
∂r

∣∣∣∣
r=R+H

TL|r=R+H = TB|r=R+H
(5)

kL
∂TL
∂r

∣∣∣∣
θ=0, r=R

= kJ
∂TJ
∂r

∣∣∣∣
θ=−ωt, r=R

TL|θ=0, r=R = TJ |θ=−ωt, r=R
(6)

2.8 Rotordynamic Modeling. A Jeffcott rotor model is
widely used for its ability to demonstrate important qualitative fea-
tures of more complex rotordynamic shaft models, and its high
computational efficiency. The equations for the Jeffcott rotor sup-
ported with tilting pad journal bearing are

Mpad iÿ pvt = −KPypvt + Fpad i

Itilt iδ̈tilt =MOtilt i

Iroll iα̈roll =MOroll i

Iyaw iβ̈yaw =MOyaw i

(7)

where i represents the pad number,Mpad_i, Itilt_i, Iroll_i, and Iyaw_i are
the mass of pad and the tilting/rolling/yawing inertias of the pad,
respectively. The terms Fpad_i, MOtilt_i, MOpitch_i, and MOyaw_i

are the fluid film force and the tilting/rolling/yawing moments
applied to a pad, respectively. These values are obtained from
solving the Reynolds Eq. (1).
Euler or Timoshenko beam elements can be utilized in a finite

element model of the shafting, for an improved lateral rotordy-
namics model relative to the Jeffcott rotor model. The dynamic
equations of the rotor system then become

[U̇] = [D][U] + [F] (8)

where [U] = Ż
Z

[ ]
, [D] = −M−1

ro Cro −M−1
ro Kro

I 0

[ ]
, [F] =

M−1
ro Fro

0

[ ]

U, Mro, Cro, and Kro are the rotor’s state vector, mass, damping,
and stiffness matrices, respectively. The term Fro is the force vector
including the nonlinear hydrodynamic force from the fluid film
bearings, the unbalance force, weight, etc. Using a beam FEM
model for transient rotordynamic simulation requires high computa-
tional costs. Therefore, a modal reduction technique is adopted to
reduce the system’s degree of freedom. The biorthogonality of
the right and left eigenvectors (ψR, ψL) with respect to the matrix
[D], is used to diagonalize the governing equations yielding the
“modal” coordinate equations

[Ẏ] = [A][Y] + [ψT
L ][F] (9)

Fig. 3 Pressure and flow boundary conditions on a bearing pad model
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where [Y] = [ψR][U], [A] = [ψT
Lm][D][ψRm] =

λi if m = n
0 if m ≠ n

{
λi is the ith eigenvalue of the system. Generally, only a small
number of modal coordinates need be utilized to obtain converged
results for the rotordynamic system’s transient response.

3 Solution Methods
There exist very few closed form analytic solutions to nonlin-

ear dynamics problems of practical interest. The alternatives are
approximate solutions and numerically integrated solutions. The
former usually involves representing the solution in terms of
truncated trigonometric series which yields sets of nonlinear
algebraic equations, utilizing recursive techniques such as multi-
ple time scales, or posing the problem in terms of time averaged
variables. The latter approach may involve numerically integrat-
ing to steady state with arbitrary initial conditions which is
referred to as a TNI or incorporating an algorithm that provides
initial conditions directed toward locating coexisting steady-state,
periodic solutions, which is referred to as a direct search numer-
ical integration.

3.1 Transient Numerical Integrations. Transient numerical
integration provides a reliable means of obtaining the response of
a nonlinear system to initial conditions and external forcing,
given an effective NI approach and time-step selection. It remains
the sole means for determining aperiodic and chaotic responses,
and for determining Lyapunov exponents to identify chaos in con-
tinuous time systems. Its shortcoming is in selecting initial condi-
tions that will yield multiple coexisting steady-state solutions.
Suppose that the governing equations for the dynamic system are

posed in standard second-order form, and then transformed to first
order form by using velocities as well as displacements as state vari-
ables. The result is

M 0
0 −K

[ ]
ẍ
ẋ

{ }
+

C K
K 0

[ ]
ẋ
x

{ }
=

F
0

{ }
(10)

or

Aż + Bz = F̂ (11)

where F contains the nonlinear bearing forces. Premultiplication of
Eq. (11) by the inverse of A yields

ẍ
ẋ

{ }
= −M−1C −M−1K

IN 0

[ ]
ẋ
x

{ }
+ M−1F

0

{ }
(12)

or

ż = Dz + F̃, z(0) = z0 (13)

The first-order differential equation form of Eq. (13), including
initial conditions, is amenable to numerical integration with
Euler’s method, Runge-Kutta, etc. The form in (13) may include
time-varying coefficients (parametric excitation) or nonlinear
bearing forces, whether explicit such as obtained from short
bearing theory, or implicit as obtained from finite bearing theory
using for example the FEM to solve Reynold’s equation. The
form in (13) may also contain a parameter which when varied can
cause a response bifurcation, the most common being the vibration
jump phenomena which occurs in response to varying the speed of
an unbalanced rotor.
The TNI approach extends to a pre-assigned final time at which

point the response may become periodic, aperiodic or chaotic. TNI
is generally the most common approach for solving nonlinear
rotordynamic equations of motion. This is more the case for
very large order systems which may include TEHD effects.
Gadangi and Palazzolo [80] and Gadangi et al. [81] utilized TNI
to predict the time transient response for a shaft supported on
TEHD modeled, nonlinear, tilting pad journal bearings and sub-
jected to a sudden imbalance due to blade or deposit loss. Suh
and Palazzolo [7,8] utilized TNI to predict the time transient
response of a high fidelity, NL, Morton effect (i.e., thermal
induced synchronous instability) model, including 3D structural
finite elements for the shaft and pads, and variable viscosity Rey-
nolds fluid film model with a transient energy equation. Clarke
et al. [6] utilized TNI for rotordynamic simulation with FRB
modeled with a steady-state thermal model with π oil films.
They considered heavily loaded power generating systems and
compared results with isothermal models. Holt et al. [13] utilized
TNI for simulating a lightly loaded turbocharger utilizing an
advanced lumped parameter thermal model, and compared
results with experimentally measured results.

Fig. 4 Thermal boundary conditions on rotor and bearing surfaces
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3.2 Direct Search Algorithms: Assumed Periodic
Approximate Form Approach. Unlike the TNI, DSA methodi-
cally search for multiple coexisting solutions of the NL dynamical
system. DSA can be roughly categorized into two general
approaches: the APAF approach and the APNIF approach.

3.2.1 Assumed Periodic Approximate Form: Harmonic
Balance Approach. The HBM is a commonly used APAF
approach. It is usually utilized for obtaining the natural frequency
and multiple, coexisting forced harmonic responses of NL
systems. The general form for the NL system governing equation
may be expressed as

d2x
dt2

+Q x,
dx
dt

( )
= 0 (14)

Harmonic balance method assumes the response of the NL system
may be represented by the truncated Fourier series:

x = a0 +
∑m
j=1

[aj cos (jωt) + bj sin (jωt)] (15)

where ω is the fundamental frequency is defined as

ω = 2π/T (16)

where T is the fundamental oscillation period. The approximation
for x(t) in Eq. (15) is substituted into Eq. (14), and the resulting
powers of sin and cos are converted into linear sin and cos terms
involving higher harmonics. Grouping like harmonics and invoking
the linear independence of sin and cos terms yields a set of nonlin-
ear algebraic equations for the unknowns a0, aj, and bj constants in
(15). These equations may be solved iteratively with MAPLE,
MATLAB, etc. to obtain coexisting, approximate steady-state solu-
tions. The stability of the coexisting solutions may be ascertained
by linearizing the system, substituting the approximate solution,
and then applying Floquet theory to the resulting linear differential
equations with time harmonic coefficients.
Harmonic balance method is widely used for NL rotordynamic

problems including bearing clearance [16], squeeze film damper
[27,90], rub/contact [20], and dead-band clearance in ball bearing
[19]. As a result, harmonic and sub-/super-harmonic solutions
were predicted and plotted versus system parameters. HBM was
used in conjunction with discrete Fourier transform (DFT) and
inverse DFT procedures to model complicated NL force functions
[17–19,91,92].

3.2.2 Assumed Periodic Approximate Form: Trigonometric
Collocation Method. The TCM was developed and formalized by
Samoilenko and Ronto in 1979 as the method of periodic successive
approximations [93]. Nataraj and Nelson [21] applied the TCM for
NL rotordynamic problems, including a flexible rotor supported
with squeeze film dampers. Similar to the HBM, the solution is
approximated by a finite trigonometric series with ω as the funda-
mental frequency, as in Eqs. (15) and (16). The unknown coeffi-
cients of the above series are ordered into a vector

ci = (a0i, a1i, b1i, a2i, b2i, · · · , ami, bmi) (17)

corresponding to the state variable xi. The TCM consists of substi-
tuting the assumed form of the solution (15) into the governing Eqs.
(14), and requiring that the equations be identically satisfied at a
specified number of times equally distributed in the period
T. Jean and Nelson [22] introduced TCM that could be applied
directly in physical coordinates for large order NL rotordynamic
systems, with enhanced computational efficiency. Chinta and Palaz-
zolo [28] also applied the TCM to a magnetic bearing system and
successfully identified various periodic responses.

3.3 Direct Search Algorithms: Assumed Periodic
Numerically Integrated Form Approach

3.3.1 Hopf Bifurcation Theory. The HBT approach yields con-
ditions on a system parameter α which causes the system described
by ẋ= f(x,α), to experience a bifurcation from a fixed equilibrium
point to a limit cycle, as the parameter changes value. A complex
conjugate pair of eigenvalues of the system, linearized at the
fixed equilibrium point, experiences a transition from purely imag-
inary values to positive real part eigenvalues at the bifurcation.
Though it is limited to smaller order systems, HBT provides the
proper information for the prediction of the occurrence, shape and
period of the periodic solution. Wang and Khonsari utilized HBT
in a series of papers [29–33] investigating journal bearing system
stability with respect to rotor stiffness, oil flow and oil temperature.
Boyaci et al. [34] investigated Hopf bifurcation in a simple rigid
rotor supported by floating ring bearing using HBT. They deter-
mined the stability region with respect to the operation parameters
and distinguished the types of occurrence such as sub- and super-
critical Hopf bifurcation using the center manifold theorem.

3.3.2 The Shooting Method. The shooting method is a general,
numerical algorithm to identify periodic solutions of two-point
boundary value problems. Vibrating systems have periodic solu-
tions for the following three cases: (a) periodically excited
systems (nonautonomous case), (b) undamped free vibration
systems (autonomous case), and (c) small motion unstable—large
motion stable limit cycle systems (autonomous case). In non-
autonomous systems, the period of the response is typically a ratio-
nal multiple of the known excitation period. The most common
form of periodic excitation in rotating machinery is mass imbalance,
which occurs at the shaft spin frequency. In contrast, the response
period of autonomous systems is unknown and depends on its
mass, stiffness, and damping characteristics. Thus, an additional
equation is needed to augment the periodicity conditions [94] in
seeking periodic responses. Numerical algorithms are presented
for both autonomous and nonautonomous cases. Equation (18)
expresses the fundamental condition of periodic response, where
x0 represents an initial state vector and xTR(x0, τ) the same state
vector at a later time τ.
The response period is a typically a rational multiple of an exci-

tation period τe in a nonautonomous system

f (x0, τ) = xTR(x0, τ) − x0 = 0 (18)

The shooting algorithm utilizes NR to iteratively locate periodic
states that satisfy Eq. (18) and is typically represented by

non − autonomous: xi+10 = xi0 + (Jix − I)−1(xio − xTR(xi0)) (19)

autonomous:
xi+10

τi+1

{ }
=

xi0
τi

{ }
+

Jix − I Jiτ
ẋi

T

0 0

[ ]−1
xi0 − xTR(xi0, τ

i)

0

{ }

(20)

where Jx =
df
dx

=
∂f
∂x1

· · · ∂f
∂xn

[ ]
, Jτ =

df
dτ

Jx and Jτ represent Jacobian matrices with respect to phase states
and period state, respectively. More detailed descriptions are avail-
able in Ref. [95]. In 1997, Sundararajan and Noah applied the shoot-
ing method to a rigid rotor supported on squeeze film damper (SFD)
bearings [23], along with the CMS method [24] for a large order
rotor-bearing system with local strong nonlinearity.

3.3.3 Programming Techniques. Increased demands for
higher-fidelity rotordynamic system simulations have provided an
impetus for the increased use of FEM/CFD in NL rotordynamic
modeling. Much of the earlier work relied on simplified bearing
models, such as infinitesimally short or infinitely long-bearing
approximations, and rigid rotors, due to the computational burden
of evaluating the Jacobian matrix each iteration. Thus, bearing
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models were also limited to simpler geometries, such as plain
journal or floating bushing bearings [23,24]. Kim and Palazzolo
[35–37] developed computationally efficient means to implement
the shooting method for complex bearing geometries and
complex shafting, by utilizing a deflation algorithm and parallel
computing strategy. As results, they were able to apply the shooting
method to model rotordymanic systems including finite-length FRB
and TPJB, with variable viscosity effects.
Deflation algorithms successively modify the mathematical

model in the iterative search for coexisting solutions to avoid
re-convergence to already located solutions of the NL system
[96–98]. With the convergence to a new solution, the original
system is modified to remove all previously found solutions, and
avoid re-convergence to any already found solution. The deflated
function f(x,τ0) includes a denominator term h, which is a series
product of relative Euclidean norms of the previously found solu-
tion vector as

xi+10
τi+1

{ }
= xi0

τi

{ }
+

Jix − I Jiτ
ẋi

T

0 0

[ ]−1
xi0 − xTR(xi0, τ

i)
0

{ }
(21)

A second strategy for faster execution is the adoption of parallel
computing methods [99,100]. Parallelized numerical routines for
obtaining Jacobian matrices in the shooting algorithm can signifi-
cantly reduce computation time, since the boundary value problems
with perturbed initial conditions are decoupled from each other, and
solved simultaneously. The multiple numerical time integrations
required to form the Jacobian matrix are executed in parallel. The
desired number of carriers, i.e., multi-processors, depends on the
system states dimension and the shooting parameters. The parallel
computing approach can also be used for any other perturbation-
based search methods.
Figure 5 [36] depicts the flowchart of the improved shooting

algorithm for rotordynamic systems. The highlighted sections of
the chart designate the deflation and parallel computing techniques.

The efficiency of deflation and parallel computing is discussed in
detail in Ref. [37].

3.3.4 Numerical Continuation. A numerical continuation is an
algorithm which utilizes a system of parametrized nonlinear equa-
tions and an initial solution (u0, λ0), such that F(u0, λ0)= 0, to
produce a set of points on the solution curves. The parameter con-
tinuation approach can provide improved insights into the circum-
stances and occurrences of stable/critical point bifurcations, such
as saddle-node, transcritical, pitch-fork, period doubling, Hopf,
and secondary Hopf (Neimark) bifurcations. Parameter continua-
tion also provides a more dependable system to analyze a dynamical
system, as it is more stable than more interactive, time-stepped
numerical solutions. Detailed mathematical descriptions of numer-
ical continuation methods are provided in Ref. [95]. Numerical con-
tinuations were often applied to rotordynamic systems to plot
solution states for varying parameter conditions such as operation
speed, imbalance eccentricity, etc. Chouchane and Amamou
[101,102] used MATCONT, an open access MATLAB numerical con-
tinuation package developed by Dhooge et al. [103,104]. They
detected the Hopf bifurcation point along the bearing parameter
of plain journal bearings, and TNI was used to support the results
obtained by the continuation method. Boyaci et al. [105] presented
entire solution branches including coexistent solution regions for a
turbocharger rotor supported on FRBs, with respect to rotating
speed. Kim and Palazzolo [35–37] accelerated the Jacobian calcula-
tion routine in arc-length continuation, by using parallel computing.
This provided a practical means to utilize higher-fidelity finite-
length models of FRB and TPJB in the bifurcation study. Groll
and Ewins [20] combined numerical continuation with an HBM fre-
quency domain solution search method, for rotor/stator contact
problems, and demonstrated improved efficiency.

4 Nonlinear Response Presentations
4.1 Nonchaotic Oscillations. Various types of presentation

formats have been developed to facilitate qualitative and quantita-
tive insights and understanding of the underlying characteristics
of nonlinear dynamical system response. These are discussed in
the following text.

4.1.1 Orbital Status and Frequency Components. The lateral
motion of the shaft and its frequency components provide a
general means to examine stability, response severity, and causality
associated with NL rotordynamic system dynamical response. The
emergence of the limit cycle, single or multiple harmonics, quasipe-
riodic, and aperiodic motions can be intuitively distinguished with
these two representative methods.

4.1.2 Phase Portrait. A phase portrait plots the trajectory of a
state versus other states in a dynamical system. Typically, these tra-
jectories are plotted for various initial states to show attractors,
repellors, domains of attraction, limit cycles, and fixed equilibrium
points. An attractor is a stable point which is also called a “sink.”
The repellor is considered as an unstable point, which is also
known as a “source.”

4.1.3 Poincaré Section. Plotting the response point (Poincaré
dot) at consecutive periods, versus a system parameter provides a
visual tool to identify bifurcations, subharmonic responses, etc.
These dots are typically obtained from a direct NI solution of the
governing equations of motion. Typically, the NI is performed for
100’s or 1000’s of periods prior to initiating the Poincaré section
in order to present only steady-state solution results. The Poincaré
section plots are typically provided for both increasing and decreas-
ing changes of the system parameter. This reveals hysteresis and
different bifurcations depending on the direction of the parameter
change. Further insights may be gained by plotting “waterfall” fre-
quency spectra with the third axis being the varying system

Fig. 5 Flow diagram for parallel computing and deflation aided
shooting [36]
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parameter. This provides a greater understanding of the dot struc-
ture and trends in the Poincaré section.

4.1.4 Solution Branches. The solution branch diagram (SBD)
provides an alternative presentation method for bifurcations, and
is especially useful for presenting multiple coexistent solution

cases. The maximum and minimum values of the nondimensional
displacements, y/Cb, of the periodic solutions are plotted with
respect to a control parameter in this diagram. The SBD is typically
included with the numerical continuation method to illustrate (1) the
emergence of periodic solutions and the growing/shrinking of
orbital motions, (2) limit cycles or quasiperiodic or aperiodic

Fig. 7 Jump phenomena between two limit cycles due to bump from FRB base at 80,000 rpm (L/D=0.2, ϵ=0.0): (a) limit
cycle #1 to limit cycle #3, (b) limit cycle #3 to limit cycle #1

Fig. 6 Identified coexisting responses using the shooting method at 80,000 rpm (L/D=0.2): (a) limit cycle #1 (stable), (b)
limit cycle #2 (unstable), and (c) limit cycle #3 (stable)
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motions without massive dots or lines, which may hide other coex-
isting solutions, and (3) sub-/supercritical types of Hopf bifurcation,
Neimark-Sacker bifurcation and others.

4.2 Chaotic Oscillations. Nonlinear rotor-bearing systems
may experience chaotic vibrations, especially when a bearing oper-
ates under heavy load and/or high speeds. Additional qualitative or
quantitative presentation methods may be used in these cases.

4.2.1 Strange Attractor. The random nature of chaos requires
presentation methods beyond those used for periodic or quasiperi-
odic motions. Poincaré maps of chaotic response typically reveals
regularities in geometric shapes referred to as strange attractors.
These typically include fractal or other complex patterns.

Fig. 8 Bifurcation diagram (L/D=0.2, ϵ=0.0) using numerical
continuation: (a) revolution speed versus max/min yj and (b)
revolution speed versus period ratio (τ/τs)

Fig. 9 Bifurcation diagram (Poincaré section) and correspond-
ing maximum LEs (L/D=0.2, ϵ=0.4)

Fig. 10 Nonlinear response evaluation at 20,000 rpm (L/D=0.2, ϵ=0.4): (a)–(d ) for orbits and ring speed, (e)–(g) for
Poincaré maps, (h) for frequency spectrum, (i) for LEs, and ( j) for MLE
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4.2.2 Lyapunov Exponents. Lyapunov exponents provide a
quantitative means for indicating the presence of chaos, by provid-
ing averaged rates of divergence or convergence of two infinitesi-
mally close trajectories onto an attractor in state space. Since n
independent initial vectors in n-dimensional space are tested to cal-
culate the rate of the separation, there is a spectrum of LEs. The
maximum value of the Lyapunov exponent (MLE) is an important
indicator to determine chaos of local responses. A positive value of
the MLE indicates chaotic behavior and a negative indicates an
absence of chaos.

4.2.3 Path to Chaos. There are several routes to chaos of
dynamic systems. The period doubling path is a succession of
period doublings events as a control parameter is monotonically
increased leading to a state of chaos. Another path to chaos is inter-
mittency, which refers to the abrupt transition of a periodic response
to chaos due to outbreaks or bursts of NL effects at irregular inter-
vals. A quasiperiodic path to chaos occurs due to the breaking or dou-
bling oscillations, which is a result of a series of Hopf and secondary
Hopf bifurcations. Sundararajan and Noah [23] identified a period
doubling path to chaos in a journal bearing-supported rotor
system. Kim and Palazzolo [35] found intermittency and quasiperi-
odic paths to chaos in the simulation of a rigid rotor-floating ring
bearing system. Chu and Zhang [106] examined the periodic dou-
bling and intermittency routes to chaos in a rub-impact Jeffcott rotor-
bearing system.

5 Examples
Kim and Palazzolo’s prior work [35–37,85] illustrates NL

responses in rotordynamic systems with full floating ring bearings
or tilting pad journal bearings. These cases show distinctly nonlin-
ear behaviors, including coexistent solutions, bifurcations, and
chaos, and were analyzed with the numerical techniques previously
described, i.e., the shooting and continuation algorithms, Lyapunov
exponents, Poincaré maps, transient numerical integration, etc.

5.1 Floating Ring Bearings System. Floating bushing bear-
ings, also called FRBs, are a special type of journal bearing with
double layered lubricant films on the inner and the outer surfaces.
Although FRBs have strong nonlinearity and are a source of insta-
bility, due to their high functionality and cost-effective perfor-
mance, they are widely used for automotive turbochargers and
other high-speed lightly loaded applications.

5.1.1 Nonlinear Response and Chaos. In general, FRBs
operate at very high speeds, e.g., 150 k–350 krpm, and normally
exhibit steady-state NL response [35]. In the present study [107],
a symmetric rigid rotor supported on FRBs is simulated using the
improved numerical shooting and continuation algorithms, along
with standard TNI. Deflation and parallel computing are imple-
mented due to the large order of the finite element model.
Figure 6 shows three coexisting, sub-synchronous responses at
80,000 rpm, as obtained by applying the shooting method. These

Fig. 11 FRB temperature distributions at specific times, utilizing the THD shooting method
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Fig. 12 Comparison of bifurcation diagrams for (a) THD finite lubricant model, (b) isothermal-finite lubricant model,
and (c) isothermal-short bearing approximation model

Fig. 13 Repelling motion from 1× synchronous to quasiperiodic response at 22,000 rpm (ϵ=0.3, Tsupply=39 °C): (a)
orbits at relative position and (b) corresponding Poincaré sections
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include two stable and one unstable limit cycle. The potential
danger of coexisting stable limit cycles is that the response could
jump out of the domain of attraction (DOA) of a benign limit
cycle into the DOA of a destructive one, following a sufficient dis-
turbance. Figure 7(a) shows such an instance following an impulse
loading applied to the support of the rotor. Arc-length continuation
provides an economical means to extend the plot of the response
versus some system parameter such as rotor speed, as illustrated
in Fig. 8. This shows both nondimensional motion and period vari-
able plots versus rpm. The latter response variable results from the
model having zero external force (imbalance, ϵ= 0.0), thus no exci-
tation period. The limit cycle period is made nondimensional τ/τs,
with respect to the rotation period τs where τs is the spinning

period 2π. An imbalance, ϵ= 0.4, is mounted on the disk for the
nonautonomous case.
Poincaré sections and the corresponding maximum Lyapunov

exponent are plotted versus rpm from 5000 rpm to 50,000 rpm in
Fig. 9. Various response states, including ×1 synchronous, ×1/3
sub-synchronous, quasiperiodic, and aperiodic motions are identi-
fied. The MLE distinguishes chaotic motions from the quasiperiodic
responses, and the MLE diagram implies chaos #1 emerges from a
quasiperiodic route to chaos, and chaos #2 emerges from an inter-
mittency route.
Figure 10 examines dynamic status at the operation condition,

20,000 rpm, from the bifurcation diagram. The orbits and ring
speed obviously aperiodic and the Poincaré maps are not typical

Fig. 14 Bifurcation diagram and coexisting solutions using shooting/continuation with respect to imbalance eccentricity on disk
(rpm=16,000, mp=1/2, α/β=0.5, and μ=13.8 mPa·s)

Fig. 15 Bifurcation diagrams with respect to pad preloads (mp) and pivot offset (α/β): (a) mp=1/2 and α/β=0.6 and (b) mp=2/3
and α/β= 0.5
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patterns like a point or closed curves but peculiar such as humming
birds or flowers. The frequency spectrum has the broad and irregu-
lar components along the domain. The spectrum of LEs and MLE
have role to quantitatively decide whether the motion is chaos or
not; here, MLE remains in the positive value. All of these evalua-
tions confirm the response is chaos.

5.1.2 Thermal-Hydrodynamic Nonlinear Effect on Rotordy-
namic Bifurcation. The previous study assumes an isothermal
lubricant condition. The study [36] included THD effects in the
bifurcation study. The shooting and continuation algorithms
include an additional solution routine to solve the energy equation

and the variable viscosity Reynolds equation simultaneously. This
provides a thermo-hydrodynamic based pressure distribution in
the lubricant film. The integrated pressure forces are transferred
into the rotor governing equations during the shooting and
arc-length continuation-based solution procedure. The computa-
tional task is accelerated by using efficient numerical approaches,
including deflation and parallel computing.
Thermo-hydrodynamic shooting can simultaneously identifymul-

tiple coexisting solutions that maintain equilibria of orbital and
thermal states under identical operating conditions. Figure 11 repre-
sents the temperature distributions over a cross-sectional plane of the
FRB at specific time instants for an identified limit cycle. Figures

Fig. 16 Pad-pivot friction mechanism in a spherical pivot type TPJB

Fig. 17 Comparisons of (a) journal locus and (b) corresponding padmotions for the operation conditions: 5000 rpm, eimb=
0.2Cb, and with/without pad-pivot friction

111802-16 / Vol. 143, NOVEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/143/11/111802/6634127/trib_143_11_111802.pdf?casa_token=bvH

L9O
H

VB40AAAAA:9U
_sH

AX6U
M

R
TpE2-bU

W
lBR

oB7f2Q
sw

_w
qM

yAC
G

U
ZaJlcudR

y8W
YioQ

VgrG
C

C
m

8M
eR

kO
htQ

 by Texas A & M
 U

niversity user on 09 August 2023



12(a)–12(c) compare bifurcation diagrams for different levels of
lubricant modeling sophistication. The results indicate that the
Hopf bifurcation onsets and the range between saddle nodes are
affected by modeling approach. The more accurate THD model
(Fig. 12(a)) shows a wider speed range of coexistent solutions, and
potential jumps from possibly benign to destructive vibration
levels. The THD based, autonomous solutions also exhibit a higher
sensitivity to the lubricant supply temperature than the isoviscous
model results.
Figure 13 shows the predicted multiple response states when

the THD shooting algorithm is applied at 22,000 rpm with Tsup=
39 °C. The relative positions of the journal orbits and the corre-
sponding Poincaré sections illustrate the transition of the response
state from the 1× synchronous to the 1/2× sub-synchronous, and
finally to the quasiperiodic.

5.2 Tilting Pad Journal Bearing System. Tilting pad journal
bearings are widely used in modern turbomachinery such as gas/

steam turbines, generators, compressor, and gearboxes due to their
stabilizing effects on the rotor systems. The tilt motions of pads sup-
press cross coupled stiffness and enhance the stability. However,
higher performance and efficiency demands push TPJBs to operate
under conditions that induce strong instability and NL responses.

5.2.1 Nonlinear Response and Bifurcations. Kim and Palaz-
zolo conducted shooting and continuation-based bifurcations
studies of a rigid rotor supported on TPJBs [37]. These provided
nonautonomous shooting and arc-length continuation algorithms
for TPJB applications. The numerical results showed bifurcations,
multiple (coexisting) responses states, and chaos of a TPJB rotody-
namic system. Parametric studies were performed with numerical
continuation, for analyzing the effects of pad preload, pivot
offset, and lubricant viscosity on the nonlinear behaviors of
TPJBs. These parameters are often varied by machinery designers
to obtain optimal vibration control.
As shown in Fig. 14, small windows in the bifurcation diagram

show a rich variety of orbital states at specific sections. All

Fig. 18 Bifurcation diagrams and related waterfall diagrams with/without friction between pad and pivot: (a) eimb= 0, (b)
eimb=0.05Cb, (c) eimb=0.10Cb, and (d ) eimb=0.20Cb

Fig. 19 CFD based NL bearing model response [109]: (a) CFD modeling, (b) pressure distribution, and (c) oil flow and viscosity
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coexistent solutions are plotted, and the stability of each solution is
determined by the Floquet theory.
Figure 15 illustrates the solution branches obtained from shoot-

ing/continuation, for two sets of the pad–pivot parameters: pad
preload and pivot offset.

5.2.2 Pad-Pivot Friction Effect on Nonlinear Response. Fric-
tion between TPJB pads and supporting pivots may significantly
affect rotordynamic stability and response [85]. This section consid-
ers the effects of pad-pivot friction, represented with a Stribeck
friction model, on the response of an autonomous and a nonauton-
omous rotor system. Specifically, nonlinear behaviors such as sub-
synchronous limit cycles, quasiperiodic responses, Hopf bifurca-
tion, and Neimark- Sacker bifurcations are presented.
Figure 16 illustrates the pad-pivot friction moments. The friction

force impedes the tilting motion of the pad by generating the friction
moment,Mf, which has different formulas for the sliding/tilting pad
case and the stuck pad case. Figure 17 shows that pad-pivot friction
causes an increase in the size of the rotor’s synchronous 1× response
orbit, and a decrease in the pad angle amplitudes.
Figure 18 shows the Poincaré sections and corresponding water-

fall diagrams for different imbalance eccentricities, with/without
pad-pivot friction. The figure implies that the pad-pivot friction
plays a significant role in the non- linear response of the tilting
pad journal bearing system, especially under high-speed and high
unbalance operations.

6 Discussions
The nonlinear elements in a journal bearing affect the rotordy-

namic performance such as orbit size and minimum film thickness
and also exert a significant effect on the onset of nonlinear vibra-
tions including sub-, super-synchronous, quasiperiodic motion,
chaos, and thermally induced instabilities. The present paper
offers a comprehensive review on types of nonlinear forces and
their effect on rotordynamic vibration, as well as modeling and
solution approaches for nonlinear response prediction. Examples
of characteristic nonlinear responses resulting from nonlinear
forces in journal bearings are presented, with various solution
approaches. Possible future work includes even higher-fidelity
TEHD bearing modeling for more accurate prediction of nonlinear
response. Yang and Palazzolo [108,109] first developed a three-
dimensional CFD model for a tilting pad journal bearing that
includes multiphase flow, thermal-fluid, transitional turbulence,
and thermal deformation of the shaft and pads as illustrated in
Fig. 19. The CFD approach includes detailed modeling of the
thermal-flow mixing of hot and cool lubricants between pads, as
opposed to the commonly used mixing coefficient method used
with Reynolds models.
Additional work includes improving the computational effi-

ciency of the coupled, FEM, nonlinear bearing—flexible rotor
system simulation.
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Nomenclature
j = index
t = time
D = journal diameter
L = bearing length
T = time period
c = coefficient vector
C = damping matrix
F = force vector
I = identity matrix
K = stiffness matrix
M = mass matrix

eimb = imbalance eccentricity
mp = pad preload
Cb = bearing clearance
Cp = pad clearance
Mf = friction moment
Jx = Jacobian matrix with respect to state vector x
Jτ = Jacobian matrix with respect to time period τ

a, b = coefficients in trigonometric series
x, z = state vectors
A, B = system matrices
α/β = pivot offset
ɛ = nondimensional imbalance eccentricity (= eimb/Cb)
μ = lubricant viscosity
τ = nondimensionalized time
ω = oscillation frequency

References
[1] Muszynska, A., 1986, “Whirl and Whip—Rotor/Bearing Stability Problems,”

J. Sound Vib., 110(3), pp. 443–462.
[2] Muszynska, A., 1988, “Stability of Whirl and Whip in Rotor Bearing System,”

J. Sound Vib., 127(1), pp. 49–64.
[3] Schweizer, B., 2009, “Oil Whirl, Oil Whip and Whirl/Whip Synchronization

Occurring in Rotor Systems With Full-Floating Ring Bearings,” Nonlinear
Dyn., 57(4), pp. 509–532.

[4] De Castro, H. F., Cavalca, K. L., and Nordmann, R., 2008, “Whirl and Whip
Instabilities in Rotor-Bearing System Considering a Nonlinear Force,”
J. Sound Vib., 317(1-2), pp. 273–293.

[5] San Andres, L., and Kerth, J., 2004, “Thermal Effects on the Performance of
Floating Ring Bearings for Turbochargers,” Proc. Inst. Mech. Eng. J., 218(5),
pp. 437–450.

[6] Clarke, D. M., Fall, C., Hayden, G. N., and Wilkinson, T. S., 1992, “A
Steady-State Model of a Floating Ring Bearing, Including Thermal Effects,”
ASME J. Tribol., 114(1), pp. 141–149.

[7] Suh, J., and Palazzolo, A. B., 2015, “Three-Dimensional Thermohydrodynamic
Morton Effect Simulation—Part I: Theoretical Model,” ASME J. Tribol.,
136(3), p. 031706.

[8] Suh, J., and Palazzolo, A. B., 2015, “Three-Dimensional Dynamic Model of
TEHD Tilting-Pad Journal Bearing—Part II: Parametric Studies,” ASME
J. Tribol., 137(4), p. 041704.

[9] Reinhardt,E., andLund, J.W., 1975,“The InfluenceofFluid Inertiaon theDynamic
Properties of Journal Bearings,” ASME J. Lubr. Technol., 97(2), pp. 159–165.

[10] San Andres, L., 1990, “Turbulent Hybrid Bearings With Fluid Inertia Effects,”
ASME J. Tribol., 112(4), pp. 699–707.

[11] Childs, D., 1993, Turbomachinery Rotordynamics: Phenomena, Modeling, and
Analysis, John Wiley & Sons, New York.

[12] Adiletta, G., Guido, A. R., and Rossi, C., 1996, “Chaotic Motions of a Rigid
Rotor in Short Journal Bearings,” Nonlinear Dyn., 10(3), pp. 251–269.

[13] Holt, C., San Andres, L., Sahay, S., Tang, P., La Rue, G., and Gjika, K., 2005,
“Test Response and Nonlinear Analysis of a Turbocharger Supported on
Floating Ring Bearings,” ASME J. Vib. Acoust., 127(2), pp. 107–115.

[14] Tian, L., Wang, W. J., and Peng, Z. J., 2013, “Nonlinear Effects of Unbalance in
the Rotor-Floating Ring Bearing System of Turbochargers,” Mech. Syst. Signal
Process., 34(1–2), pp. 298–320.

[15] Tian, L., Wang, W. J., and Peng, Z. J., 2011, “Dynamic Behaviours of a Full
Floating Ring Bearing Supported Turbocharger Rotor With Engine
Excitation,” J. Sound Vib., 330(20), pp. 4851–4874.

[16] Kim, Y. B., and Noah, S. T., 1990, “Bifurcation Analysis for Modified Jeffcott
Rotor With Bearing Clearances,” Nonlinear Dyn., 1(3), pp. 221–241.

[17] Kim, Y. B., and Noah, S. T., 1991, “Periodic Response of Multi-Disk Rotors
With Bearing Clearances,” J. Sound Vib., 144(3), pp. 381–395.

[18] Kim, Y. B., and Noah, S. T., 1991, “Response and Bifurcation Analysis of a
MDOF Rotor System With a Strong Nonlinearity,” Nonlinear Dyn., 2(3),
pp. 215–234.

[19] Kim, Y. B., and Noah, S. T., 1991, “Steady-State Analysis of a Nonlinear
Rotor-Housing System,” ASME J. Eng. Gas Turbines and Power, 113(4),
pp. 550–556.

111802-18 / Vol. 143, NOVEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/143/11/111802/6634127/trib_143_11_111802.pdf?casa_token=bvH

L9O
H

VB40AAAAA:9U
_sH

AX6U
M

R
TpE2-bU

W
lBR

oB7f2Q
sw

_w
qM

yAC
G

U
ZaJlcudR

y8W
YioQ

VgrG
C

C
m

8M
eR

kO
htQ

 by Texas A & M
 U

niversity user on 09 August 2023

http://dx.doi.org/10.1016/S0022-460X(86)80146-8
http://dx.doi.org/10.1016/0022-460X(88)90349-5
http://dx.doi.org/10.1007/s11071-009-9466-3
http://dx.doi.org/10.1007/s11071-009-9466-3
http://dx.doi.org/10.1016/j.jsv.2008.02.047
http://dx.doi.org/10.1243/1350650042128067
http://dx.doi.org/10.1115/1.2920852
http://dx.doi.org/10.1115/1.4027309
http://dx.doi.org/10.1115/1.4030021
http://dx.doi.org/10.1115/1.4030021
http://dx.doi.org/10.1115/1.3452546
http://dx.doi.org/10.1115/1.2920318
http://dx.doi.org/10.1007/BF00045106
http://dx.doi.org/10.1115/1.1857922
http://dx.doi.org/10.1016/j.ymssp.2012.07.017
http://dx.doi.org/10.1016/j.ymssp.2012.07.017
http://dx.doi.org/10.1016/j.jsv.2011.04.031
http://dx.doi.org/10.1007/BF01858295
http://dx.doi.org/10.1016/0022-460X(91)90558-2
http://dx.doi.org/10.1007/BF00045725
http://dx.doi.org/10.1115/1.2906276


[20] Groll, G., and Ewins, D. J., 2001, “The Harmonic Balance With Arc-Length
Continuation in Rotor/Stator Contact Problems,” J. Sound Vib., 241(2),
pp. 223–233.

[21] Nataraj, C., and Nelson, H. D., 1989, “Periodic Solutions in Rotor Dynamic
Systems With Nonlinear Supports: A General Approach,” ASME J. Vib.
Acoust. Stress Reliab. Des., 111(2), pp. 187–193.

[22] Jean, A. N., and Nelson, H. D., 1990, “Periodic Response Investigation of Large
Order Non-Linear Rotordynamic Systems Using Collocation,” J. Sound Vib.,
143(3), pp. 473–489.

[23] Sundararajan, P., and Noah, S. T., 1997, “Dynamics of Forced Nonlinear
Systems Using Shooting/Arc-Length Continuation Method-Application to
Rotor Systems,” ASME J. Vib. Acoust., 119(1), pp. 9–20.

[24] Sundararajan, P., and Noah, S. T., 1998, “An Algorithm for Response and
Stability of Large Order Non-Linear Systems—Application to Rotor
Systems,” J. Sound Vib., 214(4), pp. 695–723.

[25] Newkirk, B. L., and Taylor, H. D., 1925, “Shaft Whipping Due to Oil Action in
Journal Bearing,” Gen. Electr. Rev., 28(8), pp. 559–568.

[26] Monmousseau, P., Fillon, M., and Frene, J., 1997, “Transient
Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—
Comparison Between Experimental Data and Theoretical Results,” ASME
J. Tribol., 119(3), pp. 401–407.

[27] Zhao, J. Y., and Hahn, E. J., 1993, “Subharmonic, Quasi-Periodic and Chaotic
Motions of a Rigid Rotor Supported by an Eccentric Squeeze Film Damper,”
Proc. Inst. Mech. Eng. Part C, 207(6), pp. 383–392.

[28] Chinta, M., and Palazzolo, A. B., 1998, “Stability and Bifurcation of Rotor
Motion in a Magnetic Bearing,” J. Sound Vib., 214(5), pp. 793–803.

[29] Wang, J. K., and Khonsari, M. M., 2005, “Application of Hopf Bifurcation
Theory to Rotor-Bearing Systems With Consideration of Turbulent Effects,”
Tribol. International, 39, pp. 701–714.

[30] Wang, J. K., and Khonsari, M. M., 2006, “Influence of Inlet Oil Temperature on
the Instability Threshold of Rotor-Bearing Systems,” ASME J. Tribol., 128(2),
pp. 319–326.

[31] Wang, J. K., and Khonsari, M. M., 2006, “Bifurcation Analysis of a Flexible
Rotor Supported by Two Fluid-Film Journal Bearings,” ASME J. Trobol.,
128(3), pp. 594–603.

[32] Wang, J. K., and Khonsari, M. M., 2008, “Effects of Oil Inlet Pressure and Inlet
Position of Axially Grooved Infinitely Long Journal Bearings. Part I: Analytical
Solutions and Static Performance,” Tribol. Int., 41(2), pp. 119–131.

[33] Wang, J. K., and Khonsari, M. M., 2008, “Effects of Oil Inlet Pressure and Inlet
Position of Axially Grooved Infinitely Long Journal Bearings. Part II: Nonlinear
Instability Analysis,” Tribol. Int., 41(2), pp. 132–140.

[34] Boyaci, A., Hartmut, H., Seemann, W., Proppe, C., and Wauer, J., 2009,
“Analytical Bifurcation Analysis of a Rotor Supported by Floating Ring
Bearings,” Nonlinear Dyn., 57(4), pp. 497–507.

[35] Kim, S., and Palazzolo, A. B., 2017, “Shooting With Deflation Algorithm-
Based Nonlinear Response and Neimark-Sacker Bifurcation and Chaos in
Floating Ring Bearing Systems,” ASME J. Comput. Nonlinear Dyn., 12(3),
p. 031003.

[36] Kim, S., and Palazzolo, A. B., 2017, “Effects of Thermohydrodynamic (THD)
Floating Ring Bearing Model on Rotordynamic Bifurcation,” Int. J. Non-Lin.
Mech., 95, pp. 30–41.

[37] Kim, S., and Palazzolo, A. B., 2018, “Bifurcation Analysis of a Rotor Supported
by Five-Pad Tilting Pad Journal Bearings Using Numerical Continuation,”
ASME J. Tribol., 140(2), p. 021701.

[38] Monmousseau, P., Fillon, M., and Frene, J., 1998, “Transient
Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings—
Application to Bearing Seizure,” ASME J. Tribol., 120(2), pp. 319–324.

[39] Kucinschi, B., and Fillon, M., 1999, “An Experimental Study of Transient
Thermal Effects in a Plain Journal Bearing,” ASME J. Tribol., 121(2),
pp. 327–332.

[40] Deepak, J. C., and Noah, S. T., 1998, “Experimental Verification of Subcritical
Whirl Bifurcation of a Rotor Supported on a Fluid Film Bearing,” ASME
J. Tribol., 120(3), pp. 605–609.

[41] De Jongh, F. M., and Morton, P. G., 1994, “The Synchronous Instability of a
Compressor Rotor Due to Bearing Journal Differential Heating,” ASME
International Gas Turbine and Aeroengine Congress and Exposition, Hague,
The Netherlands, June, p. V005T14A002.

[42] Balbahadur, A. C., 2001, “A Thermoelastohydrodynamic Model of the Morton
Effect Operating in Overhung Rotors Supported by Plain or Tilting Pad Journal
Bearings,” Ph.D. dissertation, Virginia Tech.

[43] Panara, D., Baldassarre, L., Griffin, D., Mattana, A., Panconi, S., and Meli, E.,
2015, “Numerical Prediction and Experimental Validation of Rotor Thermal
Instability,” Proceedings of the 44th Turbomachinery Symposium, Texas
A&M, College Station, TX, Turbomachinery Laboratories.

[44] Tong, X., and Palazzolo, A. B., 2018, “Measurement and Prediction of the
Journal Circumferential Temperature Distribution for the Rotordynamic
Morton Effect,” ASME J. Tribol., 140(3), p. 031702.

[45] Plantegenet, T., Arghir, M., Hassini, M. A., and Jolly, P., 2020, “The Thermal
Unbalance Effect Induced by a Journal Bearing in Rigid and Flexible Rotors:
Experimental Analysis,” Tribol. Trans., 63(1), pp. 52–67.

[46] Plantegenet, T., Arghir, M., and Jolly, P., 2020, “Experimental Analysis of the
Thermal Unbalance Effect of a Flexible Rotor Supported by a Flexure Pivot
Tilting Pad Bearing,” Mech. Syst. Signal Process., 145, p. 106.

[47] Mondy, R. E., 2005, “The Diagnosing and Corrective Actions Taken to Reduce
the Effects of Steam Whirl in a General Electric D-11 Steam Turbine,”
International Symposium for Stability Control of Rotating Machinery
ISCORMA-3, Cleveland, OH, Sept. 19–23.

[48] Lu, X., Khonsari, M. M., and Gelink, E. R., 2006, “The Stribeck Curve:
Experimental Results and Theoretical Prediction,” ASME J. Tribol., 128(4),
pp. 789–794.

[49] Chu, F., and Lu, W., 2005, “Experimental Observation of Nonlinear Vibrations
in a Rub-Impact Rotor System,” J. Sound Vib., 283(3–5), pp. 621–643.

[50] Wu, Y., Feng, K., Zhang, Y., Liu, W., and Li, W., 2018, “Nonlinear Dynamic
Analysis of a Rotor-Bearing System with Porous Tilting Pad Bearing
Support,” Nonlinear Dyn., 94(2), pp. 1391–1408.

[51] Ramesh, J., and Majumdar, B. C., 1995, “Stability of Rough Journal Bearings
Using Nonlinear Transient Method,” ASME J. Tribol., 117(4), pp. 691–695.

[52] Turaga, R., Sekhar, A. S., and Majumdar, B. C., 2000, “Non-Linear Transient
Stability Analysis of a Rigid Rotor Supported on Hydrodynamic Journal
Bearings With Rough Surfaces,” Tribol. Trans., 43(3), pp. 447–452.

[53] Lin, J. R., 2007, “Application of the Hopf Bifurcation Theory to Limit Cycle
Prediction of Short Journal Bearings with Isotropic Roughness Effects,” Proc.
Inst. Mech. Eng., Part J: J. Eng. Tribol., 221(8), pp. 869–879.

[54] Lin, J. R., 2014, “The Influences of Longitudinal Surface Roughness on
Sub-Critical and Super-Critical Limit Cycles of Short Journal Bearings,”
Appl. Math. Model., 38(1), pp. 392–402.

[55] Tong, X., and Palazzolo, A. B., 2017, “Double Overhung Disk and Parameter
Effect on Rotordynamic Synchronous Instability—Morton Effect—Part I:
Theory and Modeling Approach,” ASME J. Tribol., 139(1), p. 011705.

[56] Tong, X., and Palazzolo, A. B., 2017, “Double Overhung Disk and Parameter
Effect on Rotordynamic Synchronous Instability—Morton Effect—Part II:
Occurrence and Prevention,” ASME J. Tribol., 139(1), p. 011706.

[57] Haugaard, A. M., and Santos, I. F., 2010, “Multi-Orifice Active Tilting-Pad
Journal Bearings—Harnessing of Synergetic Coupling Effects,” Tribol. Int.,
43(8), pp. 1374–1391.

[58] Zhang, C., Jiang, J. X., and Cheng, H. S., 2000, “A Study of Dynamically
Loaded Finite Journal Bearings in Mixed Lubrication Using a Transient
Thermohydrodynamic Analysis,” Tribol. Trans., 43(3), pp. 459–464.

[59] Zhang, C., and Cheng, H. S., 2000, “Transient Non-Newtonian
Thermohydrodynamic Mixed Lubrication of Dynamically Loaded Journal
Bearings,” ASME J. Tribol., 122(1), pp. 156–161.

[60] Zhang, C., 2002, “TEHD Behavior of Non-Newtonian Dynamically Loaded
Journal Bearings in Mixed Lubrication for Direct Problem,” ASME J. Tribol.,
124(1), pp. 178–185.

[61] Tofighi-Niaki, E., Asgharifard-Sharabiani, P., and Ahmadian, H., 2018,
“Nonlinear Dynamics of a Flexible Rotor on Tilting Pad Journal Bearings
Experiencing Rub–Impact,” Nonlinear Dyn., 94(4), pp. 2937–2956.

[62] Jang, G. H., and Yoon, J. W., 2002, “Nonlinear Dynamic Analysis of a
Hydrodynamic Journal Bearing Considering the Effect of a Rotating or
Stationary Herringbone Groove,” ASME J. Tribol., 124(2), pp. 297–304.

[63] Wang, C. C., Yau, H. T., Jang, M. J., and Yeh, Y. L., 2007, “Theoretical
Analysis of the Non-Linear Behavior of a Flexible Rotor Supported by
Herringbone Grooved Gas Journal Bearings,” Tribol. Int., 40(3), pp. 533–541.

[64] Wang, B., Sun, Y., and Ding, Q., 2016, “Dynamic Characteristics of the
Herringbone Groove Gas Journal Bearings: Numerical Simulations,” Shock
Vib., 2016, p. 8743016.

[65] Sinhasan, R., and Goyal, K. C., 1995, “Transient Response of a Two-Lobe
Journal Bearing Lubricated With Non-Newtonian Lubricant,” Tribol. Int.,
28(4), pp. 233–239.

[66] Jagadeesha, K. M., Nagaraju, T., Sharma, S. C., and Jain, S. C., 2012, “3D
Surface Roughness Effects on Transient Non-Newtonian Response of
Dynamically Loaded Journal Bearings,” Tribol. Trans., 55(1), pp. 32–42.

[67] Kushare, P. B., and Sharma, S. C., 2014, “Nonlinear Transient Stability Study of
Two Lobe Symmetric Hole Entry Worn Hybrid Journal Bearing Operating With
Non-Newtonian Lubricant,” Tribol. Int., 69, pp. 84–101.

[68] Hashimoto, H., Wada, S., and Ito, J. I., 1987, “An Application of Short Bearing
Theory to Dynamic Characteristic Problems of Turbulent Journal Bearings,”
ASME J. Tribol., 109(2), pp. 307–314.

[69] Okabe, E. P., and Cavalca, K. L., 2009, “Rotordynamic Analysis of Systems
With a Non-Linear Model of Tilting Pad Bearings Including Turbulence
Effects,” Nonlinear Dyn., 57(4), pp. 481–495.

[70] Paranjpe, R. S., and Han, T., 1995, “A Transient Thermohydrodynamic Analysis
Including Mass Conserving Cavitation for Dynamically Loaded Journal
Bearings,” ASME J. Tribol., 117(3), pp. 369–378.

[71] Paranjpe, R. S., 1996, “A Study of Dynamically Loaded Engine Bearings Using
a Transient Thermohydrodynamic Analysis,” Tribol. Trans., 39(3), pp. 636–644.

[72] Fatu, A., Hajjam, M., and Bonneau, D., 2006, “A New Model of
Thermoelastohydrodynamic Lubrication in Dynamically Loaded Journal
Bearings,” ASME J. Tribol., 128(1), pp. 85–95.

[73] Kim, B. J., and Kim, K. W., 2001, “Thermo-Elastohydrodynamic Analysis of
Connecting Rod Bearing in Internal Combustion Engine,” ASME J. Tribol.,
123(3), pp. 444–454.

[74] Piffeteau, S., Souchet, D., and Bonneau, D., 2000, “Influence of Thermal and
Elastic Deformations on Connecting-Rod Big End Bearing Lubrication Under
Dynamic Loading,” ASME J. Tribol., 122(1), pp. 181–191.

[75] Childs, D. W., and Saha, R., 2012, “A New, Iterative, Synchronous-Response
Algorithm for Analyzing the Morton Effect,” ASME J. Eng. Gas. Turb.
Power., 134(7), p. 072501.

[76] Lee, J. G., and Palazzolo, A. B., 2013, “Morton Effect Cyclic Vibration
Amplitude Determination for Tilt Pad Bearing Supported Machinery,” ASME
J. Tribol., 135(1), p. 011701.

[77] Tong, X., Palazzolo, A. B., and Suh, J., 2016, “Rotordynamic Morton Effect
Simulation With Transient, Thermal Shaft Bow,” ASME J. Tribol., 138(3),
p. 031705.

Journal of Tribology NOVEMBER 2021, Vol. 143 / 111802-19

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/143/11/111802/6634127/trib_143_11_111802.pdf?casa_token=bvH

L9O
H

VB40AAAAA:9U
_sH

AX6U
M

R
TpE2-bU

W
lBR

oB7f2Q
sw

_w
qM

yAC
G

U
ZaJlcudR

y8W
YioQ

VgrG
C

C
m

8M
eR

kO
htQ

 by Texas A & M
 U

niversity user on 09 August 2023

http://dx.doi.org/10.1006/jsvi.2000.3298
http://dx.doi.org/10.1115/1.3269840
http://dx.doi.org/10.1115/1.3269840
http://dx.doi.org/10.1016/0022-460X(90)90737-K
http://dx.doi.org/10.1115/1.2889694
http://dx.doi.org/10.1006/jsvi.1998.1614
http://dx.doi.org/10.1115/1.2833501
http://dx.doi.org/10.1115/1.2833501
http://dx.doi.org/10.1243/PIME_PROC_1993_207_145_02
http://dx.doi.org/10.1006/jsvi.1998.1549
http://dx.doi.org/10.1016/j.triboint.2005.07.031
http://dx.doi.org/10.1115/1.2162920
http://dx.doi.org/10.1115/1.2197842
http://dx.doi.org/10.1016/j.triboint.2007.05.005
http://dx.doi.org/10.1016/j.triboint.2007.05.006
http://dx.doi.org/10.1007/s11071-008-9403-x
http://dx.doi.org/10.1115/1.4034733
http://dx.doi.org/10.1016/j.ijnonlinmec.2017.05.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2017.05.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2017.05.003
http://dx.doi.org/10.1115/1.4037699
http://dx.doi.org/10.1115/1.2834429
http://dx.doi.org/10.1115/1.2833940
http://dx.doi.org/10.1115/1.2834593
http://dx.doi.org/10.1115/1.2834593
http://dx.doi.org/10.1115/1.4038104
http://dx.doi.org/10.1080/10402004.2019.1658836
http://dx.doi.org/10.1016/j.ymssp.2020.106953
http://dx.doi.org/10.1115/1.2345406
http://dx.doi.org/10.1016/j.jsv.2004.05.012
http://dx.doi.org/10.1007/s11071-018-4431-7
http://dx.doi.org/10.1115/1.2831538
http://dx.doi.org/10.1080/10402000008982362
http://dx.doi.org/10.1243/13506501JET310
http://dx.doi.org/10.1243/13506501JET310
http://dx.doi.org/10.1016/j.apm.2013.06.024
http://dx.doi.org/10.1115/1.4033888
http://dx.doi.org/10.1115/1.4033892
http://dx.doi.org/10.1016/j.triboint.2010.01.009
http://dx.doi.org/10.1080/10402000008982364
http://dx.doi.org/10.1115/1.555338
http://dx.doi.org/10.1115/1.1396342
http://dx.doi.org/10.1007/s11071-018-4535-0
http://dx.doi.org/10.1115/1.1401019
http://dx.doi.org/10.1016/j.triboint.2006.05.004
http://dx.doi.org/10.1016/0301-679X(95)00007-Q
http://dx.doi.org/10.1080/10402004.2011.626144
http://dx.doi.org/10.1016/j.triboint.2013.08.014
http://dx.doi.org/10.1115/1.3261357
http://dx.doi.org/10.1007/s11071-008-9378-7
http://dx.doi.org/10.1115/1.2831261
http://dx.doi.org/10.1080/10402009608983577
http://dx.doi.org/10.1115/1.2114932
http://dx.doi.org/10.1115/1.1353181
http://dx.doi.org/10.1115/1.555341
http://dx.doi.org/10.1115/1.4005973
http://dx.doi.org/10.1115/1.4005973
http://dx.doi.org/10.1115/1.4007884
http://dx.doi.org/10.1115/1.4007884
http://dx.doi.org/10.1115/1.4032961


[78] Tong, X., and Palazzolo, A. B., 2018, “Tilting Pad Gas Bearing
Induced Thermal Bow-Rotor Instability (Morton Effect),” Tribol. Int., 121,
pp. 269–279.

[79] Monmousseau, P., and Fillon, M., 2000, “Transient Thermoelastohydrodynamic
Analysis for Safe Operating Conditions of a Tilting-Pad Journal Bearing During
Start-Up,” Tribol. Int., 33(3-4), pp. 225–231.

[80] Gadangi, R. K., and Palazzolo, A. B., 1995, “Transient Analysis of Tilt Pad
Journal Bearings Including Effects of Pad Flexibility and Fluid Film
Temperature,” ASME J. Tribol., 117(2), pp. 302–307.

[81] Gadangi, R. K., Palazzolo, A. B., and Kim, J., 1996, “Transient Analysis of Plain
and Tilt Pad Journal Bearings Including Fluid Film Temperature Effects,”
ASME J. Tribol., 118(2), pp. 423–430.

[82] Monmousseau, P., Fillon, M., and Frene, J., 1998, “Transient
Thermoelastohydrodynamic Study of Tilting-Pad Journal Bearings Under
Dynamic Loading,” J. Eng. Gas. Turb. Power., 120(2), pp. 405–409.

[83] Monmousseau, P., and Fillon, M., 1999, “Frequency Effects on the TEHD
Behavior of a Tilting-Pad Journal Bearing Under Dynamic Loading,” ASME
J. Tribol., 121(2), pp. 321–326.

[84] Fillon, M., Desbordes, H., Frene, J., and Chan Hew Wai, C., 1996, “A Global
Approach of Thermal Effects Including Pad Deformations in Tilting-Pad
Journal Bearings Submitted to Unbalance Load,” ASME J. Tribol., 118(1),
pp. 169–174.

[85] Kim, S., and Palazzolo, A. B., 2019, “Pad-Pivot Friction Effect on Nonlinear
Response of a Rotor Supported by Tilting-Pad Journal Bearings,” ASME
J. Tribol., 141(9), p. 091701.

[86] Kucinschi, B. R., Fillon, M., Frene, J., and Pascovici, M. D., 2000, “A Transient
Thermoelastohydrodynamic Study of Steadily Loaded Plain Journal
Bearings Using Finite Element Method Analysis,” ASME J. Tribol., 122(1),
pp. 219–226.

[87] El-Butch, A. M., and Ashour, N. M., 2005, “Transient Analysis of Misaligned
Elastic Tilting-Pad Journal Bearing,” Tribol. Int., 38(1), pp. 41–48.

[88] Nilsson, L., 1978, “The Influence of Bearing Flexibility on the Dynamic
Performance of Radial Oil Film Bearings,” Proc. 5th Leeds-Lyon Sympos.
Tribol., 9(1), pp. 331–319.

[89] Desbordes, H., Fillon, M., Chan Hew Wai, C., and Frene, J., 1994, “Dynamic
Analysis of Tilting-Pad Journal Bearing—Influence of Pad Deformations,”
ASME J. Tribol., 116(3), pp. 621–627.

[90] Hahn, E. J., and Chen, P. Y. P., 1994, “Harmonic Balance Analysis of General
Squeeze Film Damped Multidegree-of-Freedom Rotor Bearing Systems,”
ASME J. Tribol., 116(3), pp. 499–507.

[91] Al-shyyab, A., and Kahraman, A., 2005, “Non-Linear Dynamic Analysis of a
Multi-Mesh Gear Train Using Mid-Term Harmonic Balance Method:
Sub-Harmonic Motions,” J. Sound Vib., 279(2), pp. 417–451.

[92] Al-shyyab, A., and Kahraman, A., 2005, “Non-Linear Dynamic Analysis of a
Multi-Mesh Gear Train Using Mid-Term Harmonic Balance Method:
Period-One Motions,” J. Sound Vib., 284(2), pp. 151–172.

[93] Samoilenko, A. M., and Ronto, N. I., 1979, Numerical-Analytic Methods of
Investigating Periodic Solutions, Mir Publishers, Moscow.

[94] Mees, A. I., 1981, Dynamics of Feedback Systems, Wiley, New York.
[95] Nayfeh, A. H., and Balachandran, B., 2008, Applied Nonlinear

Dynamics: Analytical, Computational and Experimental Methods, Wiley,
New York.

[96] Brown, K. M., and Gearhart, W. B., 1971, “Deflation Techniques for the
Calculation of Further Solutions of a Nonlinear System,” Numerische Math.,
16(4), pp. 334–342.

[97] Ojika, T., Satoshi, W., and Taketomo, M., 1983, “Deflation Algorithm for the
Multiple Roots of a System of Nonlinear Equations,” J. Math. Anal. Appl.,
96(2), pp. 463–479.

[98] Kalantonis, V. S., Perdios, E. A., Perdious, A. E., Ragos, O., and Vrahatis,
M. N., 2003, “Deflation Techniques for the Determination of Periodic
Solutions of a Certain Period,” Astrophys. Space Sci., 288(4), pp. 489–497.

[99] Kumar, V., 2002, Introduction to Parallel Computing, Addison-Wesley
Longman Publishing Co., Inc., Boston.

[100] Wang, Z., Jin, X., Zhou, Q., Ai, X., Keer, L. M., and Wang, Q., 2013, “An
Efficient Numerical Method With a Parallel Computational Strategy for
Solving Arbitrarily Shaped Inclusions in Elastoplastic Contact Problems,”
ASME J. Tribol., 135(3), p. 031401.

[101] Chouchane, M., and Amamou, A., 2011, “Bifurcation of Limit Cycles in Fluid
Film Bearings,” Int. J. Non-Linear Mech., 46(9), pp. 1258–1264.

[102] Amamou, A., and Chouchane, M., 2014, “Nonlinear Stability Analysis of Long
Hydrodynamic Journal Bearings Using Numerical Continuation,” Mech. Mach.
Theory, 72, pp. 17–24.

[103] Dhooge, A., Govaerts, W., and Kuznetsov, Y. A., 2003, “MATCONT: A
MATLAB Package for Numerical Bifurcation Analysis of ODEs,” ACM
Trans. Math. Software (TOMS), 29(2), pp. 141–164.

[104] Dhooge, A., Govaerts, W., Kuznetsov, Y. A., Meijer, H. G. E., and Sautois,
B., 2008, “New Features of the Software MatCont for Bifurcation Analysis of
Dynamical Systems,” Math. Comp. Model. Dyn., 14(2), pp. 147–175.

[105] Boyaci, A., Seemann, W., and Proppe, C., 2009, “Bifurcation Analysis of a
Turbocharger Rotor Supported by Floating Ring Bearings,” IUTAM
Symposium on Emerging Trends in Rotor Dynamics, New Delhi, India, Mar.
23–26.

[106] Chu, F., and Zhang, Z., 1998, “Bifurcation and Chaos in a Rub-Impact Jeffcott
Rotor System,” J. Sound Vib., 210(1), pp. 1–18.

[107] Nguyen-Schäfer, H., 2012, Rotordynamics of Automotive Turbochargers,
Springer, Berlin.

[108] Yang, J., and Palazzolo, A. B., 2019, “Three-Dimensional Thermo-Elasto-
Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal
Bearing—Part I: Static Response,” ASME J. Tribol., 141(6), p. 061702.

[109] Yang, J., and Palazzolo, A. B., 2019, “Three-Dimensional Thermo-Elasto-
Hydrodynamic Computational Fluid Dynamics Model of a Tilting Pad Journal
Bearing—Part II: Dynamic Response,” ASME J. Tribol., 141(6), p. 061703.

111802-20 / Vol. 143, NOVEMBER 2021 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/143/11/111802/6634127/trib_143_11_111802.pdf?casa_token=bvH

L9O
H

VB40AAAAA:9U
_sH

AX6U
M

R
TpE2-bU

W
lBR

oB7f2Q
sw

_w
qM

yAC
G

U
ZaJlcudR

y8W
YioQ

VgrG
C

C
m

8M
eR

kO
htQ

 by Texas A & M
 U

niversity user on 09 August 2023

http://dx.doi.org/10.1016/j.triboint.2018.01.066
http://dx.doi.org/10.1016/S0301-679X(00)00035-9
http://dx.doi.org/10.1115/1.2831247
http://dx.doi.org/10.1115/1.2831319
http://dx.doi.org/10.1115/1.2818137
http://dx.doi.org/10.1115/1.2833939
http://dx.doi.org/10.1115/1.2833939
http://dx.doi.org/10.1115/1.2837074
http://dx.doi.org/10.1115/1.4043971
http://dx.doi.org/10.1115/1.4043971
http://dx.doi.org/10.1115/1.555346
http://dx.doi.org/10.1016/j.triboint.2004.05.008
http://dx.doi.org/10.1115/1.2928890
http://dx.doi.org/10.1115/1.2928872
http://dx.doi.org/10.1016/j.jsv.2003.11.029
http://dx.doi.org/10.1016/j.jsv.2004.06.010
http://dx.doi.org/10.1007/BF02165004
http://dx.doi.org/10.1016/0022-247X(83)90055-0
http://dx.doi.org/10.1115/1.4023948
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.06.005
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.06.005
http://dx.doi.org/10.1016/j.mechmachtheory.2013.10.002
http://dx.doi.org/10.1016/j.mechmachtheory.2013.10.002
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1080/13873950701742754
http://dx.doi.org/10.1006/jsvi.1997.1283
http://dx.doi.org/10.1115/1.4043349
http://dx.doi.org/10.1115/1.4043350

	1  Introduction
	1.1  Porous Pad
	1.2  Surface Roughness
	1.3  Pivot Design
	1.4  Actively Lubricated Tilting Pad Journal Bearing
	1.5  Non-Newtonian Journal Bearing
	1.6  Pad Rubbing
	1.7  Herringbone Groove Bearing
	1.8  Non-Newtonian Fluid
	1.9  Turbulence in the Bearing Fluid Film

	2  Nonlinear Modeling of Thermo-Elasto-Hydro-Dynamic Bearing
	2.1  Engine Bearing
	2.2  Morton Effect
	2.3  Bearing Seizure
	2.4  Governing Fluid, Thermal and Elastic Bearing Equations With Nonlinear Terms
	2.5  Thermal Effect and Modeling
	2.6  Bearing’s Elastic and Thermal Deformation Effect and Modeling
	2.7  Bearing Boundary Conditions
	2.8  Rotordynamic Modeling

	3  Solution Methods
	3.1  Transient Numerical Integrations
	3.2  Direct Search Algorithms: Assumed Periodic Approximate Form Approach
	3.2.1  Assumed Periodic Approximate Form: Harmonic Balance Approach
	3.2.2  Assumed Periodic Approximate Form: Trigonometric Collocation Method

	3.3  Direct Search Algorithms: Assumed Periodic Numerically Integrated Form Approach
	3.3.1  Hopf Bifurcation Theory
	3.3.2  The Shooting Method
	3.3.3  Programming Techniques
	3.3.4  Numerical Continuation


	4  Nonlinear Response Presentations
	4.1  Nonchaotic Oscillations
	4.1.1  Orbital Status and Frequency Components
	4.1.2  Phase Portrait
	4.1.3  Poincaré Section
	4.1.4  Solution Branches

	4.2  Chaotic Oscillations
	4.2.1  Strange Attractor
	4.2.2  Lyapunov Exponents
	4.2.3  Path to Chaos


	5  Examples
	5.1  Floating Ring Bearings System
	5.1.1  Nonlinear Response and Chaos
	5.1.2  Thermal-Hydrodynamic Nonlinear Effect on Rotordynamic Bifurcation

	5.2  Tilting Pad Journal Bearing System
	5.2.1  Nonlinear Response and Bifurcations
	5.2.2  Pad-Pivot Friction Effect on Nonlinear Response


	6  Discussions
	 Acknowledgment
	 Conflict of Interest
	 Data Availability Statement
	 Nomenclature
	 References

