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Tilt Pad Bearing Distributed Pad
Inlet Temperature With Machine
Learning—Part I: Static
and Dynamic Characteristics
Uncertainty in mixing coefficients (MCs) for estimating pad leading-edge film temperature
in tilt pad journal bearings reduces the reliability of predicted characteristics. A three-
dimensional hybrid between pad (HBP) model, utilizing computational fluid dynamics
(CFD) and machine learning (ML), is developed to provide the radial and axial temperature
distributions at the leading edge. This provides an ML derived, two-dimensional film tem-
perature distribution in place of a single uniform temperature. This has a significant influ-
ence on predicted journal temperature, dynamic coefficients, and Morton effect response.
An innovative finite volume method (FVM) solver significantly increases computational
speed, while maintaining comparable accuracy with CFD. Part I provides methodology
and simulation results for static and dynamic characteristics, while Part II applies this to
Morton effect response. [DOI: 10.1115/1.4052171]
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1 Introduction
Cutting-edge turbomachinery demands extremely high, hydrody-

namic bearing performance. Accurate static and dynamic character-
istic prediction is imperative to ensure reliable machinery operation.
This article proposes a new approach for improving the modeling
accuracy for the most common hydrodynamic bearing, the tilting
pad journal bearing (TPJB). This hybrid approach couples both
computational fluid dynamics (CFD) and Reynolds models
through the use of mixing coefficients (MCs) to provide economic
and accurate solutions.
The Reynolds equation-based approach is commonly employed

for bearing modeling due to its simplicity, fast computation, and
noticeable progress with the thermo-elasto-hydrodynamic (TEHD)
technique [1–10]. In 1964, Lund [1] first introduced the
frequency-reduced dynamic coefficient concept. The dynamic coef-
ficients are generally utilized in the rotordynamic analysis for pre-
dicting the stability, critical speed, and force response. In 1973,
Tieu [2] employed the finite element method (FEM) to solve the
Reynolds and energy equations in the fluid film to show the signif-
icances of the thermal effect. In 1987, Knight and Barrett [3] uti-
lized a simplified one-dimensional Reynolds equation with an
energy equation. In 1989, Brugier and Pascal [4] applied the gener-
alized Reynolds equation to consider the three-dimensional (3D)
temperature distribution in the fluid film. Pivot and pad flexibilities
were involved with pad and journal thermal expansions. In 1990,
Taniguchi et al. [5] investigated a turbulence effect, and the
model took into account 3D thermal effects. In 1994, Kim et al.
[6] studied the impact of pivot flexibility, pad flexibility, and
thermal distortions of the shaft and pads. The researchers consid-
ered the generalized Reynolds and two-dimensional (2D) energy
models for the fluid film. In 2015, Suh and Palazzolo [7] proposed
a 3D approach for a TPJB. The generalized Reynolds and 3D
energy equations were solved. The thermal and elastic deformations
on pivot, pads, and shaft were also considered.

The groundbreaking research in Refs. [11–14] demonstrated that
hydrodynamic bearing performance may be significantly affected
by the oil feed conditions, which emphasizes the importance of
accurate thermal mixing modeling between pads (BPs). Most con-
ventional approaches apply Mixing theory to prescribe the
leading-edge pad temperature in the fluid film. In 1967, Ettles
[15] introduced the MC (or hot-carry-over-factor) to account for
the degree of the heat flow mixing in a thrust bearing. The MC
was substituted into the heat balance equation for leading-edge tem-
perature in the fluid film. In 1983, Mitsui et al. [16] modified the
MC for the consideration of the effect on preceding and next pad
flows. The MC is equivalent to that presented in Pinkus’s study
[17]. In 2015, Suh and Palazzolo [7] corrected the MC in
Mitsui’s study to avoid the overestimated MC problem (MC>1)
when the preceding pad flow is higher than the next pad flow.
There were recent studies to improve the conventional Mixing
theory. In 2018, Haganmann and Schwarze [18] presented a BP
model with a circular arc between pads considering a thermal
effect. Instead of the MC, the approximated parameters, including
effective supply temperature, mean upper BP temperature, and
eddy conductivity, were defined for effective thermal boundary
conditions. In 2019, Abdollahi and San Andres [19] introduced
the mixing efficiency parameter, which was similar to the MC.
The mixing efficiency parameter depends on the representative
two flow conditions according to the existence of the recirculation
flow or side leakage flow. The mixing was analyzed through a zero-
dimensional heat balance for the BP.
Test results indicate that improvements in accuracy are still

desired, even with the recent progress of the Reynolds model
[18–23]. Reynolds approach mixing theories include uncertain or
empirically derived parameters, such as the MC, mixing efficiency
parameter, and effective thermal parameter, and the 3D mixing BP
temperature distribution has been assumed or neglected. CFD solu-
tion of the full Navier–Stokes equations for the full bearing fluid
domain could remove the inaccuracies in mixing theories. Recent
studies have replaced the conventional Reynolds approach [1–
7,15–19], with the CFD approach [20–25]. In 2017, Armentrout
et al. [24] presented a single pad CFD model with turbulence
effects. In 2019, Hagemann et al. [25] also employed a single pad
CFD model, utilizing the film thickness of the Reynolds model
solutions as an initial condition. In 2019, Yang and Palazzolo
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[20,21] developed a complete TEHD-CFD model for the TPJB
static and dynamic coefficient analysis. The TEHD-CFD model
was validated with test results in the author’s extension work
[22]. The CFD and TEHD-CFD results showed better accuracy
than the TEHD-MC Reynolds model, indicating the importance
of using an accurate (CFD predicted) leading-edge temperature pre-
scription with the Reynolds model. The disadvantage of the full
bearing CFD model approach is the massive computational
resources and execution time required, rendering this impractical
for obtaining dynamic coefficients in an industrial design setting.
Consequently, a CFD supplemented Reynolds approach can
provide a good balance between improved accuracy and reasonable
computational load.
Yang and Palazzolo [23] proposed obtaining MC values from a

machine learning (ML) approach utilizing CFD-calculated MC
values for the respective training set. The machine learning-based
mixing coefficient (MLMC) approach serves to remove the uncer-
tainty of the presently assumed MC. The ML acts as a regression
of the MC obtained from massive CFD-based data. This approach
assumed a uniform temperature at a pad leading edge so that only
a singleMCwas needed per pad. This is consistentwith conventional
Reynolds model practice; however, detailed CFD results show
widely varying temperatures in the pad leading-edge film, especially
with jet or nozzle oil supply between pads. This modeling deficiency
is addressed in the present work, which develops an efficient and
accurate means of providing and incorporating axial distributions
of MC into the Reynolds model. Likewise, the leading-edge radial
temperature distribution is included by utilizing a hybrid between
pad (HBP) model with coupled 3D inner between pad (IBP) and
one-dimensional (1D) outer between pad (OBP) models. Economi-
cal implementation of the approach is achieved by solving the
energy equation utilizing a machine learning derived axial mixing
coefficient (MLAMC) distribution, along with using the HBP
model for improved accuracy. The finite volume method (FVM) is
applied and is shown to significantly decrease computation time,
and eliminate artificial temperature discontinuities, both improve-
ments over the conventional FEM-based Reynolds and energy
solvers [2–4,6,7]. The solution algorithms do not rely on commercial
CFD software and are programed with commonly available pro-
graming codes (MATLAB, C/C++). The proposed model in this study
is validated from the verified CFD work, and it is applied to the
Morton effect (ME) simulation in Part II of this study.
Summarizing, the original contributions of Part I relative to the

literature including the author’s prior work include:

(a) A 3D, hybrid: finite volume—bulk thermal flow, between
pad (HBP) model that trains a data-based ML regression of
MCs, drag torque, and oil flowrate.

(b) Applying ML to a mixing coefficient MC axial distribution,
accounting for the effects of discrete supply flow sources
(nozzles), as opposed to a single MC at each pad leading
edge.

(c) Prediction of a complete 2D temperature distribution at the
pad leading edge, including radially and axially varying tem-
peratures, which result from localized supply sources and
significantly affects asymmetric journal heating in the
Morton effect.

(d) Including a radial temperature distribution eliminates the
need for a shaft temperature correction factor to calibrate
the accuracy, which was introduced in the author’s previous
study.

(e) A novel FVM computation algorithm, embedded in a hybrid
between pad solution, coupled with a FVM solution of the
film equations shows equivalent accuracy as CFD, but with
a much faster computational speed.

(f) Part I applies the novel modeling methodology for obtaining
static equilibrium parameters and dynamic coefficients of a
tilting pad journal bearing.

2 General Modeling Methodology
2.1 Overview—System and Component Models. Figure 1

shows the multiple solid and fluid computational domains needed
to model the complex multiphysics interactions that occur in a
TPJB. The TPJB in this study consists of five pad and one rotor
(shaft) subdomains, with each pad domain described with its own
fluid film, HBP, and pad solid domain. The HBP domains include
the novel IBP and OBP subdomains, which provide 3D mass and
energy continuities between pads. The boundary between IBP and
OBP subdomains is defined by linear interpolation between the
trailing-edge film of the prior pad and the leading-edge film thick-
ness of the next pad. Table 1 summarizes the material types, the-
ories, dimensions, numerical methods, and dependent variables
for each domain. The FVM is adopted for assuring local mass
and energy conservation in fluid-type domains. The FEM is used
for its structural modeling versatility for solid-type domains.
The solution of the multiphysics, highly coupled system problem

requires a consistency of variables over the adjoining boundaries of
the subdomains, as explained as follows. The transient trajectories
of the system converging to an equilibrium state are predicted
through time integration (adaptive Runge–Kutta) of the dynamic
rotor and flexible pad models coupled with the Reynolds model.
The Reynolds model provides pressures (P), which integrate to
forces applied to the journals in the rotordynamic models. The
dynamic model’s journal and pad displacements (xR, yR, xp, yp,
and zp) change the film thickness in the Reynolds model.

Fig. 1 Illustrations of computational domains for prediction of TPJB dynamic coefficients
(magnified scale): (a) overall and (b) x–y view
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The Reynolds model provides the film velocity distributions
required in the 3D energy equation, which provides temperatures
to update the local lubricant dynamic viscosity, as an exponential
function of fluid film temperature (Tf). The updated viscosity is
imported into the Reynolds equation solution. The fluid film
domain’s 3D velocity field described earlier is determined from
the pressure solution [7], and the velocities in the HBP (uIB, vIB,
wIB, and wOB) are derived by the method described in Sec. 2.2.2.
The energy equation is solved in both the fluid film and the HBP
domains. The temperature solutions (TIB and TOB) in the HBP
domains are utilized to determine the temperature at the pad
leading-edge fluid film. The heat conduction problem in the solid
domains is solved to obtain the temperature fields (Tp and TR)
after the equilibrium state is reached. The thermal deformations
are then determined from the pad and rotor displacement solutions
(xtp, ytp, ztp, xtr, ytr, and ztr). The film thickness is then updated in the
Reynolds model using the thermal deformations. The aforemen-
tioned steps are iteratively repeated until the temperatures converge
in all domains.

2.2 Fluid Film Model—Finite Volume Method

2.2.1 Generalized Reynolds and Three-Dimensional Energy
Equation (Fluid Film). The generalized Reynolds equation [6] is
utilized to include the 3D viscosity distribution in the fluid film
and is given by

∇ · (D1∇P) + (∇D2) · Us +
∂hf
∂t

= 0 (1)

D1 =
∫hf
0

∫z
0

ξ

μf
dξdz −

∫hf
0

ξ

μf
dξ

∫hf
0

∫z
0

1
μf
dξdz

/∫hf
0

1
μf
dξ (2)

D2 =
∫hf
0

∫z
0

1
μf
dξdz

/∫hf
0

1
μf
dξ (3)

where P is the fluid film pressure, Us is the rotating shaft surface
velocity, and μf is the dynamic viscosity of the lubricant. The Rey-
nolds equation (1) is derived by combining the continuity and
momentum equations with the assumptions of incompressible New-
tonian laminar flow, neglect of shaft curvature, and inertia effects.
Film thickness expressions [7] for rigid and flexible pads are

given by Eqs. (4) and (5), respectively:

hf = Cl,p − {xR + zθy − xpvt cos(θp)} cos(θ)

− {yR − zθx − xpvt sin(θp)} sin(θ)

− (Cl,p − Cl,b) cos(θ − θp) − δtltRs sin(θ − θp) − hR,TE − hp,TE

(4)

hf ,n =
��������������������������������������
(xn − xR − znθy)

2 + (yn − yR + znθx)
2

√
− Rs − hR,TE,n − hp,TE,n

(5)

where Rs is the shaft radius and θp is the pad’s angular position.
Cl,p and Cl,b are the radial pad and bearing clearances, respec-
tively, n denotes the pad’s node index, and xR and yR are the
shaft center position coordinates. Figure 2 shows the journal and
pad motion coordinates for the film thickness calculations. This
study includes only cylindrical type pivots, with pivot deformation
(xpvt) and tilting motion (δtlt) coordinates for each pad. The film
thickness equations also include the rotor’s pitch (θx) and yaw
(θy) angular displacements, and shaft and pad thermal deforma-
tions (hR,TE, hp,TE).
Dynamic viscosity (μf) is an important term in the Reynolds

equation (1) for calculating pressures and is highly dependent on
temperature via the equation μf = μoe

α(T−To) where μo is the refer-
ence dynamic viscosity, To is a reference temperature, and α is a
viscosity coefficient. Suh and Palazzolo [26] demonstrated that
the 3D energy equation may provide a significant increase in accu-
racy over the 2D model. Therefore, the present model uses the 3D
energy equation:

ρf Cp,f
∂Tf
∂t

+ U · ∇Tf
( )

=∇ · (kf∇Tf ) + μf
∂u
∂y

( )2

+
∂w
∂y

( )2
[ ]

(6)

where ρf is the fluid density, Cp,f is the fluid specific heat, kf is the
fluid thermal conductivity, and U is the velocity vector with compo-
nents u, v, and w.
The Reynolds and energy equations are coupled via the dynamic

viscosity and fluid velocity fields. Both equations are discretized
forming systems of linear algebraic equations based on the FVM
and solved. The discretization results from integrating the govern-
ing equations for a control volume (CV). The power law scheme
is applied for the discretization of the convective and diffusive
terms in the energy equation. The discretized equations for the
control volume can be assembled into a global matrix form that

Table 1 Summary of computational domains for dynamic coefficient prediction

Computational domain Type Theory Dim.

Numerical
integration

Dependent variableSpace Time

Fluid film Fluid Reynolds 2D FVM – P
Energy 3D FVM – Tf

Inner between pad Fluid Mass 3D FVM – uIB, vIB, wIB

Energy 3D FVM – TIB

Outer between pad Fluid Mass 1D FVM – wOB

Energy 1D FVM – TOB

Pad Solid TD 3D FEM – xtp, ytp, ztp
DFP 3D FEM ARK xp, yp, zp
Energy 3D FEM – Tp

Rotor (shaft) Solid TD 3D FEM – xtr, ytr, ztr
Energy 3D FEM – TR

Dynamic rotor Solid Rigid rotor 0D – ARK xR, yR

Note: ARK: adaptive Runge–Kutta; DFP: dynamic flexible pad; Dim.: dimension; and TD: thermal deformation.
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includes the dependent variables of all control volumes, as shown in
Eqs. (7) and (8):
Generalized Reynolds equation (global matrix form):

[Kf ]
(Nf×Nf )

{P}
(Nf×1)

= {Ff }
(Nf ×1)

(7)

3D energy equation for fluid film (global matrix form):

[CT ,f ]
(NT ,f ×NT ,f )

{Ṫ f }
(NT ,f ×1)

+ [KT ,f ]
(NT ,f ×NT ,f )

{Tf }
(NT ,f×1)

= {FT ,f }
(NT ,f ×1)

(8)

where the stiffness matrix and force vector of the Reynolds equation
are [Kf] and {Ff}, respectively, and [CT,f], [KT,f], and {FT,f} are the
damping matrix, stiffness matrix, and force vector of the energy
equation, respectively. The integers Nf and NT,f indicate the
number of elements (CVs) for the Reynolds and energy equations,
respectively.

The most computationally intensive part of the solution proce-
dure is the rotor and pad dynamics solvers, coupled explicitly
with the Reynolds model and implicitly with the energy equation,
through the viscosities and film velocities. This results mainly
from the use of a computationally intensive direct solution
method and the simultaneous time integration of the governing
structural dynamics equations. In addition, a fine mesh is required
in the pad axial direction to accurately predict the fluid’s axial tem-
perature distribution [23]. Numerical tests showed that an alterna-
tive iterative solution method did not yield an improvement in
computation speed because of convergence issue in the time inte-
gration solver. An efficient direct solution was ultimately developed
for solving the Reynolds equation with the FVM. The core strategy
is to minimize computational operations in the Gauss elimination by
excluding operations involving zeros in the stiffness matrix (Kf) in
Eq. (7). To illustrate the procedure consider solving Reynolds equa-
tion for 3 × 3 CVs, the discretized Reynolds equation can be written
as follows:

ap,1 −at,1 0 −ae,1 0 0 0 0 0
−ab,2 ap,2 −at,2 0 −ae,2 0 0 0 0
0 −ab,3 ap,3 −at,3 0 −ae,3 0 0 0

−aw,1 0 0 ap,4 −at,4 0 −ae,4 0 0
0 −aw,2 0 −ab,5 ap,5 −at,5 0 −ae,5 0
0 0 −aw,3 0 −ab,6 ap,6 0 0 −ae,6
0 0 0 −aw,4 0 0 ap,7 −at,7 0
0 0 0 0 −aw,5 0 −ab,8 ap,8 −at,8
0 0 0 0 0 −aw,6 0 −ab,9 ap,9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P1

P2

P3

P4

P5

P6

P7

P8

P9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

b1
b2
b3
b4
b5
b6
b7
b8
b9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9)

The elimination process (forward substitution) is divided into two
steps:
(Step A)

(1) Eliminate second row’s first column pivot by the first row
equaiton.

(2) Eliminate third row’s second column pivot by the second
row equation.

(Step B)

(1) Eliminate fourth row’s first column pivot by the first row
equation.

(2) Eliminate fourth row’s second column pivot by the second
row equation.

(3) Eliminate fourth row’s third column pivot by the third row
equation.

(Continue (1)–(3) processes for fifth to ninth rows.)
The resulting equation is shown in Eq. (10), where the

coefficients A and B are obtained from steps (A) and (B) and
is solved by backward substitution. Zero terms are ignored
to reduce the operation count, and the Reynolds cavitation bound-
ary condition [6] is imposed during the backward substitution
process.
Table 2 provides the programming logic for application to a large

number of CVs. The examples in Sec. 6 confirm the highly signifi-
cant time savings achieved by the aforementioned algorithm as
applied to calculating the bearing’s dynamic coefficients. Part II

Fig. 2 Journal and pad motion coordinates for film thickness calculation: (a) x–y
plane and (b) journal motion
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shows a similar benefit when applied to the ME.

StepA

↓

StepB

A1,1 A2,1 A3,1 A4,1 0 0 0 0 0

0 A1,2 A2,2 A3,2 A4,2 0 0 0 0

0 0 A1,3 A2,3 A3,3 A4,3 0 0 0

0 0 0 B1,4 B2,4 B3,4 B4,4 0 0

0 0 0 0 B1,5 B2,5 B3,5 B4,5 0

0 0 0 0 0 B1,6 B2,6 B3,6 B4,6

0 0 0 0 0 0 B1,7 B2,7 B3,7

0 0 0 0 0 0 0 B1,8 B2,8

0 0 0 0 0 0 0 0 B1,9

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

P1

P2

P3

P4

P5

P6

P7

P8

P9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

A5,1

A5,2

A5,3

B5,4

B5,5

B5,6

B5,7

B5,8

B5,9

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

MATLAB sparse matrix codes are applied in the FVM solution of
the between pad, 3D fluid domains. However, the 2D film

domain modeled with the Reynolds equation results in a relatively
small K matrix, compared with the 3D domains, eliminating the
advantage of sparse matrix solvers over the proposed direct solver.
In addition, the sparse matrix approach requires time for an addi-

tional global assembly process and transformation to the sparse
matrix form. Thus, the direct solver is applied in the film domain,
and a sparse matrix solver is applied in all other domains.

2.2.2 Hybrid Between Pad Model. The groove region between
pads is divided into a 1D OBP and a 3D IBP model. The combined
model is referred to as a HBP model. The solution of the HBP
model is continuously updated with modification of the interface
boundary during the time integration of the dynamic rotor-pad
solver, as described in Sec. 3. In this manner, mass and energy con-
tinuity at the interface is maintained in the final converged solution.
Figure 3 illustrates the IBP and OBP parts of the HBP model. The
2D flow velocity fields at the IBP inlet and outlet are set equal to the
Reynolds equation values for the fluid film. There are two contribu-
tions to the radial flow in the IBP. The first is the classical “makeup”
flow component, which represents the difference between the pre-
ceding pad’s trailing-edge output flow and the following pad’s
leading-edge input flow. The second contribution is from the “pen-
etrating” flow, which is obtained from the machine learning output.
The makeup flow is present for all cases, with or without the pene-
trating flow. The same amount of the penetrating flow enters and
exits the IBP; therefore, mass is always conserved for both with
and without penetrating flow cases. Conclusively, the mass flow
is conserved for the IBP domain. The assumption is justified
since the flow in the IBP is nearly laminar and without a pressure
gradient in the axial (z) direction.
The 3D energy Eq. (6) is applied to the IBP to obtain the IBP tem-

perature distribution. This simplified model for the IBP flow pro-
vides an efficient and accurate solution in the IBP domain. Note
that the IBP flow and temperature are not directly affected by the
fresh supply oil injection at this point in the solution procedure.
Figure 4 illustrates the mass and heat flows in the OBP domain. A

complete mixing assumption is applied in the radial and circumfer-
ential directions, and the CVs are axially divided to account for the
temperature distribution by the OBP inlet and side end effects [23].
The OBP temperature is calculated from the heat balance in the fol-
lowing equation:

qtrans,(k) = qin,(k) − qout,(k) + qsup,(k) + qconv,(k) + qcond,(k) (11)

where

qsup,(k) = ρf C p,f Qsup,(k)Tsup
qin,(k) = ρf Cp,f (max [Qin,(k), 0] TOB,(k−1) −max [−Qin,(k), 0] TOB,(k))
qout,(k) = ρf Cp,f (max [Qout,(k), 0] TOB,(k) −max [−Qout,(k), 0] TOB,(k+1))

qconv,(k) = ρf Cp,f
∑NIBI

i=1 (max [Qconv,(i,1,k), 0] TIB,(i,1,k) −max [−Qconv,(i,1,k), 0] TOB,(k))

qcond,(k) =
∑NIBI

i=1 {2kfΔxΔz/Δy × (TIB,(i,1,k) − TOB,(k))}
qtrans,(k) = ρf VOBCp,f ṪOB,(k)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where TIB and TOB are the IBP and OBP fluid temperatures, respec-
tively, and Tsup is the supply oil temperature. The subscript (k) is the
OBP CV index in the axial direction. The subscripts (i, j, k) indicate
the IBP CV index in the circumferential, radial, and axial directions,
respectively. The subscript (i, 1, k) is the index of the IBP CV that is
contacted with the OBP CV, as shown in Fig. 4. The term NIBI

denotes the number of circumferential CVs in the OBP, and Qsup

is the supply oil flowrate obtained from the ML, as described in
Sec. 2.2.3. The supply oil flow is only applied at the OBP inlet
(mid-span CVs) as represented in Fig. 3, and by symmetry half,
the amount of the supply oil flows out of both side outlets. Axial

flows Qin and Qout are determined from the mass balance, as
shown in Fig. 4(a).
The HBP model consists of the IBP and OBP models. The global

mass matrix, stiffness matrix, and force vector of the HBP are
obtained by combining the discretized equations of Eq. (6) on the
IBP and heat balance equations of Eq. (11) on the OBP. Thus,
the globalM,K, and F form of the HBP can be expressed as follows:

[MBP]
(NBP×NBP)

{ṪBP}
(NBP×1)

+ [KBP]
(NBP×NBP)

{TBP}
(NBP×1)

= {FBP}
(NBP×1)

(13)

Table 2 General expression of proposed solver for discretized
Reynolds equation

Step A
for I= 2 : NK

eliminate Ith row’s (I – 1)th column pivot by (I – 1)th row eq.

Step B
for I=NK+ 1 : NINK

for J= 1: NK

eliminate Ith row’s (I+ J –NK – 1)th column pivot by (I+ J –NK – 1)
th row eq.

Note:NI: element number in x direction andNK: element number in z direction.
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The dependent variables of the HBP model are contained in the
vector:

{TBP} = {TIB,1, . . . , TIB,NIB , TOB,1, . . . , TOB,NOB}
T (14)

where NBP is the number of the HBP’s total CVs, and it is the sum-
mation of the IBP’s total CVs (NIB) and OBP’s total CVs (NOB).
Equation (13) is solved with a steady-state assumption in the
static and dynamic coefficient solver, while a transient solution is
conducted for the ME simulation. A fully implicit method is
selected to solve Eq. (13) due to the stiff matrix, which requires con-
siderable computation time in the HBP model. Equation (15) is
derived through the fully implicit method:

[Ko
BP]

(NBP×NBP)

{TBP}
(NBP×1)

= {Fo
BP}

(NBP×1)

(15)

where [Ko
BP]= [MBP]/Δt+ [KBP], {Fo

BP}= {FBP}+ [MBP]{To
BP}/Δt,

where Δt is the time-step that corresponds to the update period of
the fluid film energy equation, and {To

BP} is the HBP temperature
vector at the previous time-step. Equations (7), (8), and (15) are
solved separately for each pad. However, the temperature and the
pressure of each interface are continuously updated in the time
domain.

2.2.3 Machine Learning Axial Mixing Coefficient. Yang and
Palazzolo [23] demonstrated that MCs are actually distributions,
as opposed to a single value, and vary in the axial direction, as
shown in Fig. 5. This section provides a modeling method consid-
ering the axial MC distribution. The axial MC is defined as shown
in Eq. (16). The overbar of �T(z) indicates the mass flowrate
weighted average temperature as shown in Eq. (17). As shown in
Fig. 3, �TIBP,out is the temperature at the IBP outlet, and �TIBP,in is
the temperature at the IBP inlet. Tsup is the oil supply temperature.

η(z) ≡
�TIBP,out(z) − Tsup
�TIBP,in(z) − Tsup

(16)

�T(z) =

�
ρf uCp,f Tdr�
ρf uCp,f dr

(17)

The HBP model presented in Sec. 2.2.2 ignores the concentrated
supply flow that penetrates the IBP and axial flows. Thus, the result-
ing “original” axially distributed mixing coefficient (AMC) η0(z)
are inaccurate near the oil inlet and pad edges, but very accurate
in the intermediate regions. ML is utilized to predict the axial
MC, which combines with the HBP solution. Here, ML acts as a
regression model for the axial MC, and the axial MC ηnn,0(z) pre-
dicted by the ML are called the “original neural network axial
mixing coefficient (NNAMC)” in this study. The details of the
methodology for a related ML algorithm were provided in
Ref. [23]. This treated the MC as a single area-averaged value.
One novel contribution of the present work is to include the axial
MC effect via the neural network (NN) of the ML.
The overall methodology sequence for obtaining the trained NN

is represented in Fig. 6(a). First, input parameter sets are obtained
from a combination of the Latin hypercube sampling and full facto-
rial design of experiment (DOE) methods [23]. Figure 7 shows the
DOE parameters (ML inputs), and Table 3 lists the parameters and
their bounds. Second, CFD simulations are performed for the
groove between pad domains for all DOE-generated parameter
sets. Third, the axial MC results from the CFD simulations are uti-
lized for training and validating the axial MC NN. Finally, as shown
in Fig. 6(b), the trained NNAMC, represented by ηnn,0(z), are com-
bined with the original HBP model’s MC. The original AMC η0(z)
of the HBP model is corrected to consider the nozzle and side end
effects utilizing a corrected form ηnn,c(z) of the ηnn,0(z), and the
result is referred to as the MLAMC ηml(z). The MLAMC is utilized
to determine an equivalent oil supply injected flow distributionQpnt,
which penetrates the IBP. This distribution is searched for itera-
tively until the mixing coefficients evaluated from the HBP
domain model become equal to the ηml(z). Convergence of this iter-
ative procedure yields the IBP outlet temperature, which is the
desired radially and axially varying temperature distribution
imposed on the pad’s fluid film’s energy equation solution.

Fig. 4 Mass and heat balances of OBP model for a control volume: (a) mass balance and
(b) heat balance

Fig. 3 Outer and inner layers of the HBP model
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The NN consists of layers and neurons as illustrated in Fig. 8.
This represents the designed NN for the axial MC regression.
Important input parameters (ni= 9) are chosen from sensitivity anal-
yses [23], and ten output neurons (no= 10) are employed. Only one
hidden layer is involved in the NN, and the number of neurons in
the hidden layer (nj= 50) is determined from the best performance
case over several simulations.
Each output neuron builds the NNAMC, according to axial direc-

tion locations, as illustrated in Fig. 8. The NNAMC outputs of the
trained NN can be calculated after the input parameters transfer
through the neurons of the hidden and output layers, according to
the neuron’s connections shown in Fig. 8. Equation (18) represents
the relation of the neuron’s inputs (ykj,i) and output (Yk

j ) by the
hyperbolic tangent activation function, weighting factors, and bias
factors (i: neuron’s input index, j: neuron index, and k: layer index).

Yk
j = tanh

∑ni
i=1

wk
j,iy

k
j,i + wk

j,0

( )
(18)

The weighting and bias factors (wk
j,i, w

k
j,0) are saved in the NN

through the training process.

The HBP model can be enhanced to more accurately predict the
fluid film leading-edge temperature near an oil nozzle inlet and near
the axial ends in Fig. 5. The flow that penetrates into the IBP region
[20,22–25] must be included in the HBP model. The equivalent
penetrating flow (Qpnt,k) is introduced for this purpose, as repre-
sented in Fig. 9. The flow penetrating from the OBP to the IBP
CVs is Qpnt,k, which distributes equally toward both the leading
and trailing edges. For more than three CVs in the circumferential
direction, the backflow from IBP to OBP is only applied in the
leading and trailing-edge CVs. All CV original flowrates are calcu-
lated by mass balance without Qpnt,k, and the original flowrate is
summed with the penetrating flow. The penetrating flow (Qpnt,k)
is assumed to flow circumferentially and radially uniformly
because the IBP is very thin. The criterion for determining the pen-
etrating flow distribution is that it must produce a temperature dis-
tribution at the IBP outlet and corresponding axial mixing
coefficients that match the previously determined ηml(z). The pene-
trating flow distribution is calculated from the Newton–Raphson
procedure shown in Eq. (19).

Qnew
pnt,1

Qnew
pnt,2

..

.

Qnew
pnt,nIBK

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

Qold
pnt,1

Qold
pnt,2

..

.

Qold
pnt,nIBK

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

dη1
dQpnt,1

dη1
dQpnt,2

· · · dη1
dQpnt,nIBK

dη2
dQpnt,1

dη2
dQpnt,2

· · · dη2
dQpnt,nIBK

..

. ..
. . .

. ..
.

dηnIBK
dQpnt,1

dηnIBK
dQpnt,2

· · · dηnIBK
dQpnt,nIBK

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

η1 − ηml,1
η2 − ηml,2

..

.

ηnIBK − ηml,nIBK

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(19)

Fig. 5 Axial MC distribution for BP with a central oil inlet [23]

Fig. 6 Flow diagram for obtaining axial and radial varying temperature distribution at a pad leading edge: (a) trained
NN and (b) application of trained NN for obtaining fluid-film leading-edge temperature distribution
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where ηk is the axial MC calculated from the HBP model during the
Newton–Raphson iteration, k is the axial CV index, Qpnt is the pen-
etrating flow to be solved for, and nIBK is the number of CV layers in
the axial direction.
The Newton–Raphson iteration in Eq. (19) requires a high com-

putational load since the iteration process is nested in the time inte-
gration solver. The penetrating flow iteration scheme is
implemented only near the oil inlet and side end regions to
reduce computation time. This is a reasonable assumption
because the equivalent penetrating flow is absent in the uniform
MC region [23] as shown in Fig. 5.
Therefore, the HBP model, without penetrating flow, has suffi-

cient accuracy in the uniform MC region. The MLAMC is
defined in Eq. (20) and is illustrated in Fig. 10.

MLAMC distribution is expressed as follows:

ηml(z) =
η0(z

∗) − ΔηI(z∗), 0 ≤ z∗ ≤ z∗I
η0(z

∗), z∗I ≤ z∗ ≤ z∗E
η0(z

∗) − ΔηE(z∗), z∗E ≤ z∗ ≤ 0.5

⎧⎨
⎩ (20)

where z∗ is the nondimensional distance along the bearing length
from the mid-span, η0 is the original axial MC taken from the
HBP model when there is no penetrating flow, and z∗I is the location
where the slope of the original NNAMC (ηnn,0) changes from pos-
itive to negative. The oil inlet region is defined from 0 to z∗I . The
location z∗E is where ηnn,0 becomes less than the mean of the original
NNAMC (ηnn,M), where ηnn,0 is the axial MC predicted from the NN
without any corrections. The side end region is defined from z∗E to
0.5. As shown in Eq. (21), ηnn,0 is modified to become the corrected
NNAMC ηnn, c(z). This correction is performed to ensure similarity
of the MC between the HBP and NN models in the uniform MC
region.

ηnn,c(z
∗) =

η0(z
∗
I )

ηnn,0(z
∗
I )
ηnn,0(z

∗) (21)

The similarity is justified since there is no penetrating flow in the
uniform MC region. The main heat transfer mechanism in the

Table 3 Input parameters and the bounds for machine learning
[23]

Parameters Min value Max value Unit

(1) L1/Rs 0.4 1.0 –
(2) Rs 25.4 76.2 mm
(3) Tin 50 120 °C
(4) Us 15 95 m/s
(5) Pt,sup 0.01 0.7 MPag
(6) Pin 0 1.2 MPag
(7) Pout 0 0.65 MPag
(8) hin/Cl,b 0.3 2.2 –
(9) hout/Cl,b 0.3 2.2 –

Note: Rs: shaft radius.

Fig. 7 Illustration of input parameters for machine learning [23]

Fig. 8 Neural network for axial MC regression

Fig. 9 Addition of IBP penetrating flow Qpnt,k to replicate ηml(z)
near the oil inlet and side end edges

Fig. 10 Mixing coefficient distributions η0(z), ηnn,0(z) and
ηnn,c(z), mean of ηnn,0(z), and oil inlet, uniform and end effect
axial regions
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uniform MC region is the inflow of makeup cold oil from the OBP
region and thermal diffusion. Thus, if the penetrating flow (strong
convection) occurs in the uniform MC region, it would yield an
overcooled shaft surface temperature. Equation (20), including the
definition in Eq. (21), is substituted into Eq. (19). The original
axial MC in the HBP model is corrected by the ΔηI near the oil
inlet region (0 ≤ z∗ ≤ z∗I ) and by ΔηE near the side end region
(z∗E ≤ z ≤ 0.5). The quantities ΔηI and ΔηE are the axial MC
changes due to the cooling effect of the penetrating flow and are
evaluated from the following equations:

ΔηI(z
∗) = η0(z

∗
I ) − ηnn,c(z

∗) (22)

ΔηE(z
∗) = ηnn,M − ηnn,c(z

∗) (23)

The MLAMC in Eq. (20) provides the mixing coefficient MC
distribution along the axial direction of the half bearing. In practice,
ΔηI and ΔηE are symmetrically applied to the full bearing. In addi-
tion to the NN ML of the axial MC (NN-Axial MC), the NN ML
[23] is also applied for prescribing the pressure boundary conditions
of the Reynolds model at the pad leading and trailing edges. Finally,
NN ML is also applied to the drag torque and supply flowrate [23]
bearing outputs. The total supply pressure is one of the input param-
eters in all NNs, including the NN-axial MC, NN-pressure, and
NN-drag torque and supply flowrate. In this study, the supply flow-
rate is an input condition. Thus, the total supply pressure for all NNs
is iteratively updated until the supply flowrate predicted from the
NN-drag torque and supply flowrate is identical to the given
supply flowrate. An in-depth description of this process is provided
in Ref. [23].

2.3 Dynamic Rotor and Pad Model. The rotor is treated as a
rigid mass mR in a transient search for the equilibrium position,

about which the linearized bearing force coefficients are evaluated.
Figure 11 shows the x and y degrees-of-freedom (DOFs) of the
rotor, and the components of the resultant integrated pressure force
plus external applied load. The rotor equation is expressed as follows:

[MR]
(2×2)

{ẍR}
(2×1)

= {FR}
(2×1)

(24)

where [MR] is the rotor’s mass matrix with rotor massmR, {FR} is the
rotor’s force vector with components {Fx,nb, Fy,nb}

T, and {xR} equals
{xR, yR}

T, as shown in Fig. 11.
Figure 12 shows the rigid and flexible pad models, along with the

associated DOFs and applied forces. The nonlinear pivot stiffness
kjpvt , based on Hertzian contact theory [7] is included with both
pad models. Pivot flexibility decreases dynamic coefficients and
damping ratios as demonstrated in Ref. [21].
The pad includes a 0.5 offset, and the cylindrical pivot allows

only tilting and pivot (radial) motions. The pad dynamical equations
are expressed as follows:
Rigid pad:

Mj
PGẍ

j
pvt + kjpvtx

j
pvt =

∑
i

(Fj
nx,i + Fj

tx,i) (25)

IjGδ̈
j
tilt =

∑
i

(Mj
n,i +Mj

t,i) (26)

Flexible pad:

[Mj
p]

(3njp×3n
j
p)

{ẍjp}

(3njp×1)

+ [Kj
p]

(3njp×3n
j
p)

{xjp}

(3njp×1)

= {Fj
p}

(3njp×1)

(27)

where Mj
PG and IjG are the jth pad’s mass and mass moment of

inertia, respectively, Fj
nx,i and Fj

tx,i indicate the x-direction forces

(local coordinate) from the normal and tangential forces (Fj
n,i and

Fj
t,i) on the pad surface, and the moments (Mj

n,i and Mj
t,i) are deter-

mined from the normal and tangential forces, respectively, where
the forces are calculated from the solution of the Reynolds equation.
The terms [Mj

p], [K
j
p], and [F

j
p] are the mass matrix, stiffness matrix,

and force vector of the jth pad and are derived based on the 3D
structural FEM [27] as given in “Three-Dimensional Finite
Element MethodMatrix for Structure Deformation (3D Hexahedron
Element, Three Degrees-of-Freedom for 1 Node)” in the Appendix.
The term njp is the total node number of the jth pad, and each node
has 3DOFs, as shown in Fig. 12(b).
A modal reduction technique is applied to the pad dynamic model

to reduce computation time. Equation (28) is the jth pad’s motion
equation in modal coordinates {ξjp}. The pad’s eigenvalue matrix
[λjp], modal mass matrix [Mj

ξ,p], and modal force vector {Fj
ξ,p} are

given in Eqs. (29)–(31), where [Φj
p] is the pad eigenvector matrix

with mp modes. Pad dynamics are solved simultaneously with the

Fig. 11 Degrees-of-freedomof the rigid rotor model with applied
force

Fig. 12 Pad dynamics models with a flexible pivot: (a) rigid pad and (b) flexible pad ( j: pad
index and i: node index in fluid film domain)
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rotor dynamics.

{ξ̈
j
p}

(mp×1)

+ [λp]
(mp×mp)

{ξjp}
(mp×1)

= [Mξ,p]
−1

(mp×mp)

{Fξ,p}
(mp×1)

(28)

[λjp]
(mp×mp)

= [Φj
p]

T

(mp×3n
j
p)

[Mj
p]

−1

(3njp×3n
j
p)

[Kj
p]

(3njp×3np)

[Φj
p]

(3njp×mp)

(29)

[Mj
ξ,p]

(mp×mp)

= [Φj
p]

T

(mp×3n
j
p)

[Mj
p]

(3njp×3n
j
p)

[Φj
p]

(3njp×mp)

(30)

{Fj
ξ,p}

(mp×1)

= [Φj
p]

T

(mp×3n
j
p)

{Fj
p}

(3njp×1)

(31)

2.4 Steady-State Thermal Rotor and Pad Model. Figure 13
shows the finite element pad domains with five pads and finite
element shaft domain. The latter includes solid elements in the
journal region and beam elements for the remainder of the shaft.
These two submodels for the shaft are connected by fictitious,
rigid massless beam elements. The shaft temperature distribution
in the region of the journal is assumed axisymmetric for calculating
the bearing’s dynamic coefficients. It has a general asymmetric form
when calculating ME response, where synchronous vibration in the
bearing due to imbalance and thermal rotor bow causes temperature
asymmetry. The combined solid element–beam element model is
essential for ME simulations to obtain accurate journal temperature
distributions, and internal bending moments, along with overall
shaft vibration modeling. A detailed related discussion is presented
in Part II.
The temperature in the solid domains (pads and shaft) are

obtained via FEM solution of the steady-state heat conduction equa-
tion:

∇ · (ks∇Ts) = 0 (32)

where s is the solid domain subscript for the shaft and pads, ks is the
solid thermal conductivity, and Ts is the solid’s temperature. The
FEM discretized form [28] of the heat conduction equation, as
presented in “Discretized Equation for Three-Dimensional Energy
Equation in Fluid (3D Hexahedron Element)” in the Appendix is
expressed as follows:

[KT ,s]
(nT ,s×nT ,s)

{Ts}
(nT ,s×1)

= {FT ,s}
(nT ,s×1)

(33)

where the stiffness matrix and force vector of heat conduction are
[KT,s] and {FT,s}, respectively, and nT,s indicates the number of
nodes of the solid domain. The solid’s temperature solutions {Ts}

in Eq. (33) are substituted into the thermal load terms {Fs} in
Eq. (34) to obtain the thermal deformation total displacements
{xt s}. The stiffness matrix [Ks] and force vector {Fs} for the
thermal deformation are obtained based on FEM, as described in
(A3). The number of nodes is ns for the solid domain for the
thermal deformation.

[Ks]
(3ns×3ns)

{x t s}
(3ns×1)

= {Fs}
(3ns×1)

(34)

2.5 Dynamic Coefficient. A detailed description for obtaining
the dynamic coefficients is briefly presented here and presented in
more detail in Refs. [21,22]. The dynamic coefficients (kbrg, cbrg)
are condensed from the full dynamic coefficients (kfbrg, cfbrg). The
condensed dynamic coefficients are referred to as synchronously
reduced dynamic coefficients. Also, log decrements in Eq. (35)
are computed to evaluate the stability of the rotor-bearing system
with the rigid rotor supported by two symmetric TPJBs [21]:

δd,i =
2πφi��������
1 − φ2

i

√ (35)

where φi= −real(λr,i)/|λr,i|, and λr,i are the rotor-bearing system
eigenvalues.

2.6 Boundary Condition. Imposing the correct natural and
essential boundary conditions is critical for numerically solving
this multiphysics boundary value problem. This section discusses
the boundary conditions for all interfaces in the computational
domains. Figure 14 depicts the prescribed boundary conditions,
and the information on the numberings (1)–(15) is explained in
Table 4. The fluid-type domains consist of the HBP and fluid film
domains, as shown in Figs. 14(a) and 14(b). As explained in
Sec. 2.2.3, mass flowrate and temperature are imposed at the
supply oil inlet (1), and the flowrate affects the pressure at the
fluid film inlet (6) and outlet (7). The pressures are obtained from
the pressure NN. The interfaces (3)–(7)p and (4)–(6) take the iden-
tical velocity and temperature field at each interface (superscript p:
for prior pad).
The OBP side outlet (2) is the opening boundary in which mass

flowrate and temperature are calculated from the mass and heat bal-
ances. As discussed in Sec. 2.2.2, the IBP side outlet (5) is assumed
to have zero flow. The side outlet temperatures of the IBP (5) and
fluid film (8) are imposed as ambient temperature, and zero pressure
is applied to the fluid-film side outlet (8). The solid’s outer surfaces,

Fig. 13 Solid domains for temperature and thermal deformation
predictions (dynamic coefficient solver)

Fig. 14 Boundary conditions of the computational domains:
(a) HBP, (b) fluid film, (c) shaft, and (d ) pad
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(14) and (15), are prescribed with heat convection coefficients and
temperatures. The interfaces (9)–(10), (10)–(11), and (12)–(13)
between the fluid and solid domains are applied as in Eqs. (36)
and (37).

kf
∂Tf
∂r

∣∣∣∣
(θ,Rs ,z)

= ks
∂Ts
∂r

∣∣∣∣
(θ+ωt,Rs ,z)

(36)

Tf |(θ,Rs ,z) = Ts|(θ+ωt,Rs ,z) (37)

where s is the solid domain index for the pad and shaft, and Rs is the
radius at the interface. The shaft is modeled in the rotating frame, so
the shaft’s angular position θr in the rotating frame equals θ+ωt,
where θ is the fixed frame angle. The shaft spin frequency ω is
(ωs), and the pad ω is zero in Eqs. (36) and (37). The shaft and
pad interface temperatures are updated from the accumulated heat
fluxes in Eq. (36) during one period of the spin frequency. In addi-
tion, the boundary conditions imposed for the structural analysis
[7,20,29], including the dynamic and thermal deformation
models, are provided in Fig. 15.

3 Algorithm for Static and Dynamic Coefficient
Prediction
Figure 16 shows a flow diagram for determining TPJB dynamic

coefficients, including the use of MLAMC for improving the pad
inlet temperature distribution model. The main computation

procedure is conducted in the dynamic rotor-pad solver, as illus-
trated in Fig. 16(a). The Reynolds, HBP, fluid-film energy, and
dynamic model time integration solvers are coupled through the
pressure (P), IBP temperature (TIB), fluid film temperature (Tf),
and rotor-pad displacements and velocity (YD). The pressures P
are utilized to update fluid force terms on the rotor-pad model
and to update velocity fields in the HBP and fluid film energy
solvers. The temperatures TIB and Tf are utilized for satisfying the
fluid–fluid type interface boundary conditions between the IBP
and the fluid film domains. The fluid-film energy solver continu-
ously changes the dynamic viscosity field (μf) using the updated
Tf. The motion variables YD affect the film thickness (hf) and its
time derivative (ḣf ), which are used as parameters in all solvers
of the fluid domains.
The dynamic rotor-pad solver sequentially computes the Rey-

nolds, HBP, fluid-film energy, and dynamic model time integration
solvers until the motion and thermal states have converged to
steady-state equilibrium values [26]. The solid temperature fields
(Ts) are obtained from the solid energy solver, after the motions
have reached their steady-state equilibrium values. At that point,
Ts is substituted into the thermal load term of the force vectors in
the solid thermal deformation solver to obtain the total displacement
vector by thermal deformation (Xt s). This vector Xt s is then used to
calculate the film thickness changes (hs,TE) due to thermal expan-
sion. The processes (2)–(4) continue until the temperature relative
errors become acceptably small in all domains.
The synchronously reduced, dynamic coefficient solver (5) calcu-

lates the synchronously reduced dynamic coefficients, following Ts,

Table 4 Summary of prescribed boundary conditions in computational domains

No. Description Governing equation B.C type

(1) Supply oil inlet Mass Mass flow rate
Energy Temperature

(2) OBP side outlet Mass and energy Opening
(3) IBP inlet Mass and energy (3)–(7)p interface
(4) IBP outlet Mass and energy (4)–(6) interface
(5) IBP side outlet Mass Zero flow

Energy Temperature
(6) Fluid-film inlet Reynolds Pressure (NN-P)

Energy (4)–(6) interface
(7) Fluid-film outlet Reynolds Pressure (NN-P)

Energy (3)n–(7) interface
(8) Fluid-film side outlet Reynolds Pressure

Energy Temperature
(9)–(10) IBP–shaft interface Energy (9)a–(10) interface
(10)–(11) Shaft–Fluid film interface Energy (10)–(11)a interface
(12)–(13) Fluid film–pad interface Energy (12)–(13) interface
(14) Shaft outer surface Energy HCC and temperature
(15) Pad outer surface Energy HCC and temperature

Note: Superscripts: n: next pad; p: prior pad; a: all pads; interface: continuity of dependent variable; and HCC: heat
convection coefficient.

Fig. 15 Boundary conditions for structural analysis: (a) dynamic model (cylindrical pivot),
(b) thermal deformation (cylindrical pivot), and (c) thermal deformation (shaft)
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YD, and Xts reaching their steady-state equilibrium values. The
detailed procedures of the dynamic coefficient solver by the pertur-
bation method are given in Fig. 16(c). The author’s prior study
[21,22] elaborates on the dynamic coefficient calculation.
Figure 16(b) shows the flow diagram for solving the HBP model
including usage of the MLAMC to provide leading-edge, film tem-
perature distributions. A comprehensive description of the HBP
domain solution is provided in the companion Part II paper.

4 Comparison to Finite Element Method—Dynamic
Coefficient Solver
Most bearing DC literature employ FEM solutions of the Rey-

nolds and energy equations in the fluid-film domain, utilizing an
upwind scheme for treating the convective term in the energy equa-
tion. A study is presented comparing solutions of the Reynolds and
energy equations using the FEM and the FVM for solution accuracy
and computational efficiency. The input parameters are selected
from the author’s prior study [22] for comparison and validation
purposes. The input parameters are presented in Table 5, and they
are applied identically for the FEM and FVM. The computational
domains with these input values are illustrated in Fig. 17. The
grid density was determined to be converged based on grid
studies when considering the MLAMC, as derived from ten
output neurons of the NN.
Figure 18 shows the fluid-film temperature fields at the Pad 1

mid-span for the FEM and FVM models. The results are obtained
after the first 1/40 period of the spin frequency. The boundary tem-
perature of the fluid film is assumed to be constant. The journal’s
operating speed is 9000 rpm, and the fluid-film leading-edge tem-
perature is 60 °C. The pad surface temperature is 50 °C, and the

shaft surface temperature is varied from 60 to 90 °C. The fluid-film
leading-edge pressure in this section is constant, and its value is
132 kPa. Temperature discontinuities appear in the FEM solutions,
as clearly shown in Fig. 18(a). This indicates that energy is not con-
served near the discontinuity regions. This deficiency increases in

Fig. 16 Algorithm for static and dynamic coefficient prediction: (a) overall procedure, (b) HBP model solver, and (c)
dynamic coefficient solver

Table 5 Input parameters for static and dynamic coefficient
prediction [22]

Parameters Value

Shaft diameter (mm) 101.6
Bearing length (mm) 50.8
Bearing clearance (mm) 0.0749
Number of pads 5
Pad thickness (mm) 12.7
Pad thickness at pivot (mm) 15
Pad arc length (deg) 60
Pad offset 0.5
Applied load (N) 5000
Load direction −Y
Preload 0.5
Operating speed (kRPM) 3–15
Pivot type Rocker (cylindrical)
Load type Load between pad
Outside HCC (W/m2K) 50
Ambient temperature (°C) 30
Supply oil temperature (°C) 40
Selected pad flexible modes 1–20
Lubricant ISO 32
Material (solid domains) Steel

Note: HCC: heat convection coefficient.
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severity as the shaft surface temperature increases, as shown in
Fig. 18(a). In contrast, the FVM shown in Fig. 18(b) does not
show this deficiency since the discretization of the FVM strictly
follows the conservation rules of transported quantities. The
trailing-edge temperatures show close agreement between
the FEM and FVM in spite of the temperature discontinuity in the
FEM results.
Energy is approximately, globally conserved in the FEM

approach, but is not locally conserved. FEM approaches in previous
studies have generally yielded good results for static equilibrium
quantities and dynamic coefficients. However, violations of local
energy conservation with the FEM approach may lead to film tem-
perature discontinuity near the shaft surface, which degrades the
accuracy of the shaft temperature prediction. The shaft surface tem-
perature is set equal to the film temperature at the node nearest to its
shaft counterpart. Shaft temperature affects shaft thermal deforma-
tion, which in turn affects film thickness, which may have a

considerable impact on static and dynamic coefficient results. The
following section reveals that shaft temperature error, caused by
the film temperature discontinuity problem, produces significant
errors in the TPJB performance prediction.
The temperature discontinuity problem in the FEM approach is

explained in the following discussion. Considering the energy equa-
tion, the FEM global stiffness matrix in Eq. (8) is obtained by
summing (assembling) the element stiffness matrices ([Ke

T ,f ]):

[Ke
T ,f ] =

∫
Ωe
kf∇We

i · ∇Ne
j dΩ

e +
∫
Ωe
ρf Cp,f u

e
i · ∇Ne

j dΩ
e (38)

whereW is a weight function, N is a shape function, andΩ indicates
the element volume. The assembly procedure provides the follow-
ing expression for the temperature at node p:

apTp =
∑
nb=i

anbTnb + bp (39)

where nb indicates the neighbor nodes of node p and a and b are the
linking coefficients of the global stiffness matrix and source term,
respectively. The linking coefficient (a) at the node, where the tem-
perature discontinuity occurs has been analyzed to investigate the
cause of the discontinuity. The conductive and convective terms
in (52) determine the linking coefficients.
From physical considerations, the component of the convective

term normal to the wall should be zero. However, the FEM
approach violates this constraint wherever there is a circumferential
variation in film thickness, as caused by tilting of a pad and/or
eccentricity of the journal. This causes a fictitious convective wall
heat flow (heat loss) as depicted in Fig. 19(b). This is because the
Reynolds model assumes a zero y-direction (film thickness direc-
tion) velocity, and the convective wall heat flow is evaluated only

Fig. 17 Applied computational domains for static equilibrium
and dynamic coefficient prediction (30,490 nodes, journal rotat-
ing direction: C.C.W.)

Fig. 18 Fluid-film temperature fields at pad 1 mid-span versus shaft surface temperature with (a) FEM and (b) FVM
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in the x-direction (circumferential) velocity. As illustrated in
Fig. 18, the problem becomes severe if the flow inlet and wall tem-
peratures have a large difference, since the wall convective heat loss
is proportional to the prescribed wall temperature. Thus, the above
constraint on flow direction causes the temperature discontinuity
problem near the shaft wall. On the contrary, a uniform film in
the circumferential direction does not show a film temperature dis-
continuity problem since the flow is always parallel to the wall,
hence no convective wall heat flow, as shown in Fig. 19(a). The
problem is exacerbated with high tilt pad angles, journal eccentric-
ity, and speed. In contrast, the FVM eliminates the possibility of
convective flow normal to a wall in all cases because the FVM for-
mulation imposes a zero normal flow velocity condition at the shaft
and pad surfaces.
It was confirmed that the use of denser grids with the FEM

method, based on recent 3D modeling studies [7,20–22,26,29,30],
will not mitigate the temperature discontinuity problem. The trans-
formation of the lubricant gap to a parallel gap might improve the
temperature discontinuity problem, and this will be investigated
in the future work.

5 Results
5.1 Neural Network Axial Mixing Coefficient. The NN of

axial MC is the regression model for obtaining the axial MCs and
is used to calculate MLAMC in Sec. 2.2.3. The inputs for the NN
consists of nine key parameters [23], including the film thickness
and pressure at the IBP inlet and outlet, total pressure at the
supply oil inlet, temperature at the IBP inlet, operating speed,
journal radius, and bearing length. The outputs are the axial MCs

at ten nodes uniformly distributed in the axial direction, along the
half length of the axially symmetric bearing.
The axial MC outputs of the NN are denoted as the NNAMC.

Axial MCs computed from CFD simulations are used to train the
NN. As in the DOE presented in the previous work [23], CFD simu-
lations were performed for 1536 parameter sets in the training set
and 658 parameter sets in the test set. The training data set estimates
the weighting and bias factors of the NN, and the test data set is uti-
lized for the validation of the trained NN.
A convergence study was conducted on the number of hidden

layer neurons, which is an essential parameter to achieve desired
NN performance [23]. Figure 20 shows the performance results
for a total of 21,940 axial MC samples at the ten axial nodes.
There is a considerable improvement in accuracy between 5 and
25 neurons, as shown in Figs. 20(a) and 20(b). The best result
occurs for 50 neurons as shown in Fig. 20(c). The mean squared
error (MSE) and R2 of the NNAMC confirm its accuracy. The
MSE of the training data set is 3.6e-4. The MSE of the test data
is 5.6e-4, and the R2 is 1.0.

5.2 Static Variable and Dynamic Coefficient Results—
Validation. The Reynolds/energy equation solution with the
NNAMC approach is validated by comparing static variables and
dynamic coefficients with an experimentally validated full CFD
approach [15]. The conventional approach utilizing a FEM solution
with user selected constant MC values is also included to illustrate
its strong dependence on choice of MC, and its significant differ-
ences compared with the CFD- and NNAMC-based approaches.
The choice of MC in the conventional approach typically depends
on “industry practice” or “personal experience,” which underlies

Fig. 19 Convective heat evaluated by Reynolds velocity solution: (a) non-wedge shape and
(b) wedge shape

Fig. 20 Optimal NNAMC for increasing number of hidden layer neurons: (a) 5 neurons, (b) 25 neurons, and (c) 50 neurons
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the weakness of the approach. All results presented include the
effects of pivot flexibility, pad flexibility, and thermal deformation
of the solid domains.
Table 6 [22] confirms the efficacy of the CFD approach, as com-

pared with experimental measurements [31,32]. The mean error is
defined from the averaged relative error between the theoretical
results and measurements. The CFD approach is seen to display
much better agreement than the FEM approach, except for the x
direction direct stiffness. “FEM-MC” indicates the FEM-based
approach for the Reynolds and energy equations, utilizing a conven-
tional (constant) MC model [7,20] to provide the fluid-film
leading-edge temperature. The “CFD” approach utilizes a
FVM-based solver to solve the Navier–Stokes and energy equa-
tions, without utilizing MC. The “FVM-HBP&MLAMC” is the
FVM-based Reynolds approach presented in this study, which con-
siders the 3D HBP coupled with the MLAMC. The FVM is a dis-
cretization method for solving the governing differential
equations for fluid-film pressure and temperature. Yang and Palaz-
zolo [23] introduced the MLMC to prescribe the fluid-film inlet
temperature; however, the axial MC effect was not taken into
account. In addition, Ref. [23] utilized an experience-based shaft
surface temperature correction factor to account for neglecting
radial temperature gradients at the pad leading edge. The tempera-
ture discontinuity issue discussed in Sec. 4 was noted in Ref. [23],
but unlike the present work, did not address the radial temperature
distribution at the fluid-film inlet. There is no need for a “shaft
surface temperature correction factor” [23], and the film tempera-
ture discontinuity problem is eliminated, with the present approach.
Input parameter values are provided in Table 5, and the compu-

tational domains of the FVM-HBP&MLAMC model are depicted
in Fig. 17. Nineteen and seven axial node rows are included with
the half symmetry FVM-HBP&MLAMC and FEM models, respec-
tively. The fewer number in the FEM case is justified due to the
constant MC assumption.
Figure 21 show static (equilibrium) results, including the eccen-

tricity ratio, averaged shaft temperature, and peak loaded-pad (Pad
5) temperature. The proposed FVM model shows remarkable

agreement with all CFD results, validating its accuracy for static
results. Figure 21(a) shows a lower eccentricity ratio for the CFD
and FVM-HBP&MLAMC approaches compared with the conven-
tional FEM approach. This results from the greater thermal expan-
sion of the shaft in the former approaches, as indicated by the
temperature results in Fig. 21(b). The higher journal expansion
decreases the clearance, causing greater lift on the journal. The sig-
nificantly higher averaged shaft temperature for the CFD and
FVM-HBP&MLAMC approaches, relative to the FEM-MC 0.4
and 1.0 approach, results from the film temperature discontinuity
problem and uniform temperature assumption at the fluid-film
leading-edge. Figure 21(c) confirms the high accuracy of the
FVM-HBP&MLAMC approach for predicting peak pad
temperature.
Figure 22 shows the temperature fields over all computational

domains and clearly confirms the higher shaft temperature in the
FVM model. Figures 22(a) and 22(b) show uniform lubricant tem-
peratures over the pad inlets in the conventional FEM models.
In contrast, Fig. 22(c) shows more realistic axial and radial lubri-

cant temperature distributions [22] over the pad inlets. Figure 23
shows magnified views of temperature fields in the pad fluid-film
domains. Figures 23(a) and 23(b) show that the pad inlet tempera-
ture conditions affect localized temperatures only near the pad
inlets, resulting in strong temperature discontinuities in the FEM
model. In contrast, the FVM-HBP&MLAMC approach results in
Fig. 22(c) exhibit a continuous, global influence of pad inlet condi-
tions throughout all pads. This approach accounts for the axial MC
(oil inlet and side end effects) and radial temperature distribution
effects at the pad inlets, and the resulting effects throughout all com-
putational domains.
Figures 24 and 25 show the nondimensional dynamic coefficients

and log decrement results in the x and y directions, respectively. Log
dec values are obtained by considering a simple, lumped mass Jeff-
cott rotor model, with mass 1019 kg, and symmetrically supported
by two identical bearings. The FVM model results show excellent
agreement with the previously experimentally validated CFD
work [22]. The increased radial heat flow into the journal, and
resulting thermal expansion and clearance reduction, in the
FVM-HBP&MLAMC model, yields larger stiffness and damping
coefficients compared with the FEM-uniform MC model. The
damping prediction accuracy in the FVM-HBP&MLAMC model
is significantly better than the FEM-uniform MC approach.
The model validity has been confirmed for the tilt pad journal

bearing with 101.8 mm diameter and 80 m/s surface velocity oper-
ating in laminar regime. Further investigation should be conducted
for higher surface velocity bearings, operating in a fully turbulent
regime.
The new approach presented provides a more accurate represen-

tation of the fluid film temperature at the pad leading-edge. This
approach exhibits trends of larger rotordynamic coefficients,
hotter shaft temperatures, and higher stability margins from the

Table 6 Validation of CFD approach versus experiment [22]

Parameters

Mean error (%) between experimental and
simulation

CFD FEM-MC0.4 FEM-MC1.0

Eccentricity ratio 16.1 15.7 25.3
Peak loaded-pad T 4.2 7.6 4.3
Kxx 12.5 9.8 8.1
Kyy 6.7 10.5 9.2
Cxx 14.0 18.6 24.7
Cyy 11.2 20.7 26.5

Fig. 21 Static results comparison with CFD [22] for (a) eccentricity ratio, (b) averaged shaft temperature, and (c) peak loaded-
pad temperature
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log dec results, compared with the previous approaches. These
trends should not be generalized to various oil injection types,
and further investigation needs to be performed for the various
injection types as future work.

6 Improvement of Computational Speed—Dynamic
Coefficient Solver
The FVM-based Reynolds approach employs an efficient solver,

specifically designed for the FVM discretized equations, instead of
conventional LU decomposition, as discussed in Sec. 2.2.1. The
time-consuming assembly process for the global matrices is elimi-
nated in the FVM solver for the Reynolds and energy equations.

The rotor and pad dynamic models require the most intensive com-
putational load due to the time integration with a small time-step,
while solving the discretized equations by the direct solver. Conse-
quently, the efficient solvers for the Reynolds and energy equations
significantly reduce computation time. An elapsed time comparison
between the FEMand FVMmodels is performed to demonstrate this.
The time taken for the state trajectories to reach their equilibrium
value for a constant load is compared between the two approaches.
Process 2 in Fig. 16(a) is executed once for this comparison, with
the operating conditions: speed, 10,000 rpm; supply oil flow, 30
LPM. The novel solver exhibits significant improvement in the com-
putation speed, as shown in Fig. 26.
The computation time acceleration becomes more pronounced as

the grid density increases. Figures 21, 24, and 25 show close

Fig. 23 Temperature contour comparison of fluid-film domains between FEM and FVM: (a) FEM-MC0.4, (b) FEM-MC1.0,
and (c) FVM-HBP&MLAMC

Fig. 22 Temperature contour comparison over the full computational domains between FEM and FVM: (a) FEM-MC0.4,
(b) FEM-MC1.0, and (c) FVM-HBP&MLAMC

Fig. 24 Dynamic coefficient results (1) and comparison with CFD study [22]: (a) nondimensional stiffness, Kxx, (b) nondimen-
sional damping, Cxx, and (c) log decrement-x
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agreement between the FVM-HBP&MLAMC approach and the
full CFD modeling. Table 7 shows that FVM-HBP&MLAMC
also executes far quicker than the full CFD model. Notably, the
FVM-HBP&MLAMC is 178 times faster than the CFD solver with
only minor loss in accuracy. The time in Table 7 is for the static solu-
tion plus dynamic coefficients. The proposed FVM-HBP&MLAMC
approach provides considerable benefits in accuracy (versus FEM)
and computation speed (versus FEM or CFD).

7 Conclusions
Anovel approach for obtaining temperatures, steady-state equilib-

rium variables and dynamic coefficients of a TPJB’s TEHD model
was presented. The approach includes axial and radial lubricant tem-
perature distributions at the pad leading-edge and their effects on
static and dynamic response variables. Second, local violation of
energy conservation and consequent temperature discontinuities
were discovered in the FEM solution of the energy equation and
resolved by using the FVM, which inherently satisfies local mass
and energy conservation. The FEM deficiency persisted even with
much finer meshes. The aforementioned shortcomings of the con-
ventional FEM-uniform MC approach restrict heat flow from the
film into the journal, resulting in lower journal temperatures and
thermal expansions. This in turn was shown to have significant influ-
ence on increasing journal static eccentricity and decreasing stiffness
and damping. As a consequence, it is recommended to utilize the
conventional FEM-uniform MC approach only in cases where

high fidelity results are not required, and journal thermal growth is
anticipated to be negligible.
A novel HBP model was utilized for accurately and efficiently

representing the mixing phenomena between pads. The HBP has
a 3D modeled IBP subdomain and a 1D modeled OBP subdomain.
The IBP model provides AMC and the radial and axial temperature
distribution at the pad inlets. The AMC are also obtained from a
novel DOE-CFD trained artificial neural network ML solution
step. The benchmark for accuracy comparison in the examples
was a full CFD model solution that was previously validated by
comparison with experimental results [22]. The soundness of the
CFD benchmark standard is also supported by the additional
terms in its governing equations that are intentionally removed or
simplified in the thin film Reynolds model. Results from the exam-
ples presented demonstrate a high level of agreement between the
FVM-HBP&MLAMC approach and the full CFD derived results
[22]. The conventional FEM-uniform MC approach on the other
hand showed a high dependence on the MC value selected, and sig-
nificant difference with the CFD model results.
A highly significant contribution was a computational algorithm

that greatly accelerated computation time through the application of
an efficient solving procedure in the discretized form of the Rey-
nolds equation. The Reynolds equation is solved repeatedly in the
coupled rotor-pad dynamics model, which magnifies the computa-
tional benefit from the new solving procedure. The FVM-
HBP&MLAMC approach executes in approximately one tenth of
the time required by the conventional FEM-MC approach. The
new approach was also 178 times faster than the full CFD model
approach and still yielded very similar results. In summary, the
novel FVM-HBP&MLAMC approach demonstrated significant
advances in TPJB-TEHD modeling accuracy and computational
efficiency, including (1) considering the 2D (radial, axial) tempera-
ture distribution at the fluid-film, pad leading edge, (2) removing the
MC value selection uncertainty or any assumed parameter on the
BP region, and (3) accelerating computation speed while preserving
similar accuracy to a full CFD model.

Fig. 26 Elapsed time for the dynamic coefficient solver to reach the steady-state equilibrium
stage at 10,000 rpm, 30 LPM with (a) rigid pads and (b) flexible pad

Fig. 25 Dynamic coefficient results (2) and comparison with CFD study [22]: (a) nondimensional stiffness, Kyy, (b) non-
dimensional damping, Cyy, and (c) log decrement-y

Table 7 Total computational time of dynamic coefficient solver
(Reynolds versus CFD)

Parameters FVM-HBP&MLAMC (s) CFD (s) Comparison

Rigid pad 1049 186,221 178X faster
Flexible pad 3363 453,669 135X faster
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Nomenclature
P = pressure of fluid-film domain, Pa
hf = film thickness, m
kf = lubricant thermal conductivity, W/m K

uIB = circumferential velocity of inner BP domain, m/s
vIB = radial velocity of inner BP domain, m/s
wIB = axial velocity of inner BP domain, m/s
wOB = axial velocity of outer BP domain, m/s
xtp = pad total x displacement by thermal deformation, m
xp = pad total x displacement by dynamic model, m
xtr = rotor total x displacement by thermal deformation, m
xR = rotor total x displacement by dynamic model, m
ytp = pad total y displacement by thermal deformation, m
yp = pad total y displacement by dynamic model, m
ytr = rotor total y displacement by thermal deformation, m
yR = rotor total y displacement by dynamic model, m
ztp = pad total z displacement by thermal deformation, m
zp = pad total z displacement by dynamic model, m
ztr = rotor total z displacement by thermal deformation, m

Cl,b = radial bearing clearance, m
Cl,p = pad bearing clearance, m
Cp,f = lubricant specific heat, J/kg K
Qpnt = pseudo penetrating flow, m3/s
Rs = shaft radius, m
Tf = temperature of fluid-film domain, °C
TIB = temperature of inner BP domain, °C
TOB = temperature of outer BP domain, °C
TP = temperature of pad domain, °C
TR = temperature of rotor domain, °C
Us = rotating shaft surface velocity, m/s
ΔηI = axial mixing coefficient variation due to oil inlet effect
ΔηE = axial mixing coefficient variation due to side end effect

η = axial mixing coefficient
ηml = machine learning axial mixing coefficient

ηnn,c = corrected neural network axial mixing coefficient
ηnn,0 = original neural network axial mixing coefficient
η0 = original axial mixing coefficient in HBP model

ηnn,M = corrected neural network axial mixing coefficient
μf = dynamic viscosity of lubricant, Pa s
ρf = density of lubricant, kg/m3

ωR = rotor spin frequency, rad/s

Appendix
Discretized Equation for Generalized Reynolds Equation (2D

Quadrilateral Element). Discretized equation of generalized Rey-
nolds equation for a 2D control volume:

aPPPP = aPWPW + aPEPE + aPBPB + aPTPT + bP

where

aPP = aPW + aPE + aPB + aPT , aPW = (D1,w/δxw)Δz,

aPE = (D1,e/δxe)Δz, aPB = (D1,b/δzb)Δx

aPT = (D1,t/δzt)Δx, bP = (D2,e − D2,w)UsΔz + (∂h/∂t)PΔxΔz

where D1 and D2 and film thickness (h) are given in Sec. 2.2.1 and
Us is the shaft surface velocity (Fig. 27).

Discretized Equation for Three-Dimensional Energy
Equation in Fluid (3D Hexahedron Element)
Discretized equation of energy equation for a 3D control volume:

aoṪP + aTPTP = aTWTW + aTETE + aTS TS + aTNTN + aTBTB + aTTTT + bT

where

aTW = DwAp(|Pw|) +max [Fw, 0], aTE = DeAp(|Pe|) +max [−Fe, 0]

aTS = DsAp(|Ps|) +max [Fs, 0], aTN = DnAp(|Pn|) +max [−Fn, 0]

aTB = DbAp(|Pb|) +max [Fb, 0], aTT = DtAp(|Pt|) +max [−Ft , 0]

aTP = aTW + aTE + aTS + aTN + aTB + aTT , ao = ρf C p,f V

bT = μf V((∂u/∂y)
2
P + (∂w/∂y)2P)

where μf is the fluid dynamic viscosity and V is the volume of the
element. Fw, Fe, Fs, Fn, Fb, and Ft are the convective heat flowrate

Fw = ρf Cp,f uAw, Fe = ρf Cp,f uAe, Fs = ρf C p,f vAs, Fs = ρf C p,f vAn

Fb = ρf Cp,f wAb, Ft = ρf Cp,f vAt

Fig. 27 2D control volume for generalized Reynolds equation:
face index: w, e, b, t; volume index: W, E, B, T

Fig. 28 3D control volume for 3D energy equation: face index:
w, e, s, n, b, t; volume index: W, E, S, N, B, T
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where A is the area at the face. The corresponding conductances are
defined by

Dw = kwAw/δxw, De = keAe/δxe, Ds = ksAs/δys,

Dn = knAn/δyn, Db = kbAb/δzb Dt = ktAt/δzt

The Peclet number are Pw=Fw/Dw, Pe=Fe/De, Ps=Fs/Ds, Pn=
Fn/Dn, Pb=Fb/Db, and Pt=Ft/Dt. The function of Ap is determined

by employing the power law scheme as Ap(|P|)=max [0, (1− 0.1|
P|5)] (Fig. 28).

Three-Dimensional Finite Element Method Matrix for
Structure Deformation (3D Hexahedron Element, Three
Degrees-of-Freedom for 1 Node) [27,33]

Mass matrix: [Mstr,e]
(24×24)

=
∫1
−1

∫1
−1

∫1
−1

ρe [ψ str]
T

(24×3)

[ψ str]
(3×24)

det ( [Jstr]
(3×3)

)dξ1dξ2dξ3

Stiffness matrix: [Kstr,e]
(24×24)

=
∫1
−1

∫1
−1

∫1
−1

[Bstr,e]
T

(24×6)

[Estr,e]
(6×6)

[Bstr,e]
(6×24)

det ( [Jstr]
(3×3)

)dξ1dξ2dξ3

Force vector: {Fstr,e}
(24×1)

=
∫1
−1

∫1
−1

∫1
−1

[Bstr,e]
T

(24×6)

[Estr,e]
(6×6)

{εt0}
(6×1)

+ [ψ str]
T

(24×3)

{εc0}
(3×1)

( )
det ( [Jstr]

(3×3)
)dξ1dξ2dξ3

where {ɛt0}= α(T− Tref)[1, 1, 1, 0, 0, 0]
T for thermal deformation

and {εc0} = [Fcξ1,Fcξ2,0]
T for centrifugal force effect. ρe: solid

density; physical coordinate axis: x1, x2, and x3; natural coordinate
axis: ξ1, ξ2, and ξ3; ψstr: shape function; [Jstr]: Jacobian matrix with
Jstr,ij= ∂xi/∂ξj; [Estr,e]: constitutive relation matrix (isotropic mate-
rial); Fc: centrifugal force; and [Bstr,e]: coefficient matrix.

Three-Dimensional Finite Element Method Matrix for
Structural Temperature (3D Hexahedron Element, One
Degree-of-Freedom for 1 Node) [28]
Specific heat matrix:

Ce
T ,ij =

∫1
−1

∫1
−1

∫1
−1

ρec p,eψ iψ j det ( [JT ]
(3×3)

)dξ1dξ2dξ3

Heat conduction matrix:

Ke
T ,ij =

∫1
−1

∫1
−1

∫1
−1

ke(ψ i,x1ψ j,x1 + ψ i,x2ψ j,x2 + ψ i,x3ψ j,x3 )

× det ( [JT ]
(3×3)

)dξ1dξ2dξ3

where ψa,b= ∂ψa/∂b. The shape function derivatives in physical
coordinate should be transformed to natural coordinate derivatives
before integration.
cp,e: solid specific heat, ke: solid thermal conductivity, ψ: Shape

function, and [JT]: Jacobian matrix with JT,ij= ∂xi/∂ξj for solid
temperature.
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