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Structural Modification to Achieve Antiresonance in Helicopters
B. P. Wang,* L. Kitis,t W. D. Pilkey, J and A. Palazzolo§

University of Virginia, Charlottesville, Va.

A design method is developed to create an antiresonance (by modifying structural properties) of a vibrating
system under sinusoidal loading. A local modification method in which appendant systems are added to the
original structure is used to analyze such systems. Since the original system and added systems are treated en-
tirely separately, this method allows for efficient repetitive searching until the appendant system produces a
meaningful reduction in vibration. Finally, the direct design of appendant structures to create antiresonance is
presented. These methods are illustrated by numerical results obtained for a 44-degree-of-freedom elastic line
helicopter model.

Nomenclature
= damping matrix = NxN
= parameter modification matrix
= Young's modulus
= Leverrier's matrices
= forcing vector = Nx 1
= square matrix
= polynomials
= impedance matrix
= area moment of inertia
= stiffness matrix = NxN
= stiffness matrix for attached system
= 4x4 beam element stiffness matrix
= beam length
= mass matrix = NxN
= mass matrix for attached system
= 4x4 beam element mass matrix
= beam mass density
= number of degrees of freedom
= receptance matrix = NxN
= parameter equal to I/a or 1//3
= subsets of the response vector
= response vector = Nxl
= impedance matrix of attached system
= partitions of Y
= response vector for the modified

system = NX 1
= impedance matrix = NxN
= percent change in stiffness
= design parameter indicating per-

centage of a base value
= Leverrier's polynomial
= coefficients of Leverrier's polynomial

Introduction

EXCESSIVE levels of vibration in helicopters are a major
problem for designers. Fatigue of helicopter components,

damage to weapons and equipment onboard the aircraft, crew
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and passenger discomfort, and navigation problems for the
pilot are among the adverse effects of vibration. In this paper,
numerical methods for the structural modification of the
fuselage and for the analysis and design of appendant
structures are applied to the problem of helicopter vibration
alleviation. In particular, design techniques are developed to
achieve desired antiresonances through structural
modification.

In the previous literature on helicopter vibration, the
research most relevant to the present work has been concerned
with structural modification, vibration isolation devices, and
antiresonance theory. In Ref. 1 a simple structural
modification is made by inserting a linear spring between two
points on the fuselage of a 60-degree-of-freedom helicopter
model. The relative effectiveness of changing the spring
stiffness is studied using various evaluation criteria. The
theoretical basis of this study is given in Ref. 2, which is also
the precursor of Ref. 3 where the theory is applied to the
model of a pilot's seat structure. A comparative study of the
method of Ref. 3 and an optimization method based on the
forced response strain energy approach is made in Ref. 4. The
authors find the latter more favorable for structures with a
large number of degrees of freedom. More general methods
for efficient redesign based on reanalysis techniques have
been developed.5'6 An extensive review of these generalized
reanalysis approaches applicable to finite-element analysis is
provided in Ref. 6.

Vibration isolation devices based on antiresonances,
notably the Kaman Aerospace Corporation's dynamic an-
tiresonant vibration isolator (DAVI), have been described in
the literature. References 7-9 are among the more recent
papers on the DAVI. A solution to the antiresonant eigen-
value problem along with new applications of antiresonance
theory to helicopter engineering is presented in Ref. 10.

In this paper, a structural design method which treats a
structural property, such as stiffness, as a design parameter is
used to create an antiresonance on the helicopter fuselage.
The required value of the design parameter is found directly
as the root of a polynomial. Next a local modification method
is described in which systems are added to the fuselage and the
total number of degrees of freedom of the modified system
becomes larger than that of the original system. The original
system, treated entirely separate from the added systems, is
only solved once, and as the properties of the added systems
are altered the analysis involves only the added structures.
Finally, the direct design of a beam attached to the fuselage to
create an antiresonance is presented.

Rotor/Fuselage Model
The numerical examples presented in this paper are for the

symmetric elastic line helicopter model developed by
Rutkowski.11 Its three components, the rotor, the
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FUSELAGE

Fig. 1 Elastic line helicopter model.

4 *

LL
Fig. 2 Beam element
geometry.

rotor/fuselage interface, and the fuselage, are shown in Fig.
1. Ten identical beam elements make up the rotor. Each beam*
element has the 4 degrees of freedom shown in Fig. 2. The
rotor stiffness matrix includes the frequency-dependent
centrifugal stiffness of the rotating blades. The damping
matrix accounts for aerodynamic damping of the blade
motion and is also frequency-dependent.

The fuselage is modeled by ten beam elements with linearly
varying mass density and stiffness. These beam elements have
transverse deflection and rotation, as shown in Fig. 2.
Fuselage damping is neglected so that its vibratory behavior is
defined by mass and elastic stiffness matrices. The coupling
between the rotor and the fuselage is modeled by a stiff linear
spring. Numerical values for the structural properties of this
helicopter model are given in Table 1.

The beam elements of the model described above are
numbered 1-20 in Fig. 1. If j is the element number of a beam
element in the rotor blade, then 1 <j < 10, and the 4 degrees of
freedom (DOF) associated with it are 2j— 1, 2y, 2j + 1, 2/ + 2.
The translation DOF of the fuselage are indicated with arrows
on Fig. 1. If j is the element number of a beam element of the
fuselage, then 11 <y<20, and the DOF associated with it are

Structural Modification for Antiresonance
The differential equation for the vibration of a mechanical

system with N degrees of freedom is

(1)

where M, C, and K are the NX N mass, damping, and stiff-
ness matrices respectively; x is the TV vector of generalized
displacements; and/is the N vector of generalized forces. For
the helicopter model considered in this paper C is a function
of rotor frequency. Under sinusoidal loading at frequency w,
the vector x0 of displacement amplitudes is related to the
vector/0 of force amplitudes by

(-<*2M+iwC+K)x0=f0

The impedance matrix Z is defined as

(2)

(3)

The matrices M, C, and K depend on the structural
properties of the model chosen to represent the helicopter.
Initially we choose a representative set of system parameter
values which defines a base receptance matrix R. Then the
changes in structural properties are treated as free design
parameters and calculated to obtain an antiresonance at a
point on the fuselage. In the rest of this section damping is
neglected, so that the matrix C = 0.

For the elastic line helicopter model described in the
previous section, let Ke denote a beam element stiffness
matrix. Then Ke is a 4 x 4 matrix which has the form

Ke=(EI/L3)K0 (5)

where E is Young's modulus, /the area moment of inertia, L
the length of the beam element, and K0 a 4x4 symmetric
matrix depending only on L. Similarly, the 4 x 4 beam element
mass matrix Me can be written as

(6)

where m0 is beam density and M0 is a 4 x 4 symmetric matrix
depending only on L. Now suppose the stiffnesses of some
beam elements of the fuselage are changed. The modified
form of Eq. (2) is

Zy0+D0y0=f0 (7)

where y0 is the response of the modified system and D0 is the
matrix that is to be added to Z to account for the stiffness
change in the beam elements. Since a change in stiffness is
effected by changing the quantity El, and since by Eq. (5) this
quantity can be factored out in front of a constant matrix, the
matrix D0 in Eq. (7) can be written as

D0 = aD (8)

Table 1 Properties of the beam elements9

Element Stiffness 1 Stiffness 2 Length,
no. (£/);, blb-ft2 (£/)2,blb-ft2 ft

1-10 20,000 0
11
12

, 13
14
15
16
17
18
19
20

1,500,000 0
1,500,000 0

5
4
4

1,500,000 3,750,000 4
5,250,000 3,750,000 4
9,000,000 3,750,000 4

12,750,000 -3,750,000 4
9,000,000 -3,750,000 4
5,250,000 -3,750,000 4
1,500,000 0
1,500,000 0

4
4

Mass
density,
slug/ft

0.296
1
1
1

16
16
16
16

1
1
1

a Interface spring stiffness = 10 10 (Ib/ft). bThe element elastic stiffness
matrix is

(EI)j
L3

12

6L 4L2 Symmetric ( j
+ -

-12 - -6L 12

6L 2L2 -6L 4L2

" 6

El) 2 2L L2

L3 -6 -2L

_ 4L L2

1

Symmetric

6

-4L 3L2

M=mnL

and the receptance matrix R is the inverse of Z,

13/35

11/210L 1/105L2 Symmetric

9/70 13/420L 13/35

-13/420L -1/140L2 -11/210L 1/105L2

(4) where m0 is the mass density.
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where D is to be taken as the base stiffness matrix used for the
beam elements in assembling the system stiffness matrix K so
that a can be regarded as a percent change in stiffness. Similar
considerations apply to beam mass density changes by virtue
ofEq.(6).

After obtaining the receptance matrix R of the original
structure by inverting the matrix Z, rewrite Eq. (7) as

(9)

To preserve the symmetry of the helicopter model at least two
symmetrically located beam elements, e.g., 14 and 17, must be
modified simultaneously. Suppose two nonadjacent beam
elements are to be modified. The matrix D is highly sparse; its
nonzero entries form an 8 x 8 matrix at the degrees of freedom
where the beam element contributes to the global mass and
stiffness matrices. Thus the nonzero entries of RD form an
TVx 8 matrix. Consequently the product RDy0 involves only
eight coordinates of the full response vector y0. Let G be the
8x8 matrix obtained from RD by taking the nontrivial entries
of the rows m +j, 0 <j < 7. Define an 8-vector u

"j+r

and an 8-vector w

0<j<7 (10)

(11)

Then from Eq. (9) extract a set of eight linear equations in u

u + aGu = w (12)

so that u is given by

u=(I+QiG)-*w (13)

where / is the 8x8 identity matrix. The matrix inversion in
Eq. (13) is conveniently carried out by Leverrier's
algorithm,12 which gives

» —— o
s7F,+s6F2

i ________ £

- +07s + 08
(14)

where hj(s) is a seventh degree polynomial and

=s8 + 07s7+ • • • +07s + 08

where s equals I/a, F{ are 8 x 8 matrices, and 0, are scalars for
l< /<8 . Since w is a constant vector, Eq. (14) may be
rewritten as

(15)

(16)

Since the term RDy0 in Eq. (9) involves only the eight
coordinates Uj given by Eq. (15), it is clear that by combining
Eqs. (9) and (15), the entire response vector y0 can be written
as ratios of polynomials

(17)

Thus if ( y 0 ) k is to be on antiresonant degree of freedom, then

gk(s)=0 (18)

provided that at least one of the roots 5 given by Eq. (18) is
physically realizable, i.e., such that a = l/s>-l. Equation
(17) also provides an efficient way to calculate the response
vector y0 as a function of the design parameter a.

This procedure is easily extended to the case where more
than two beam elements are to be modified by the same
amount. The polynomial to be solved is then of higher degree
since the matrix G in Eq. (13) is of higher order.

Fig. 3 Modification
of the system by two
appendant systems.

ADDED
SYSTEM 1

ADDED
SYSTEM 2

Ofil&NAL SYSTEM

Local Modification with Increased
Degrees of Freedom

Vibrating structures are often modified by appendant
dynamic systems. The resulting structure then has additional
degrees of freedom and it is natural to seek a method in which
the component systems are treated separately to compute the
response of the modified system. We will consider the system
shown in Fig. 3 where the original structure is modified by
adding two new structures to it.

Rewrite Eq. (2) for the original structure as

Zx0=f0 (19)

After modification, if the original structure is isolated as a
free body,

Zx=f0+fBl+fB2 (20)

where x is the response vector after modification, the sub-
script B stands for "boundary," and/5/, fB2 are the forces
exerted on the original system by the added systems at the
points of contact. In the sequel, denote by XB. the vector of
generalized displacements at the interface between the
original system and the /th added system. We define the
impedance matrix HBB. associated with the vector xBi such
that

Equation (20) becomes

(21)

(22)

where we assume enough zeros have been inserted into the
vectors HBB.xBi to make them compatible with the dimension
of the left-hand side. Next we combine the two vectors XB]
and xB2 into one vector XB, and compute a new matrix H such
that

HxB = (23)

For example, if XBJ — (u]f u2, u3) andxB2 = (u ] t u2, u4, u5),
then XB = (u]f u2, u3, u4, us)\ we expand both matrices HBB.
to make them 5 x 5 by inserting zeros in the appropriate places
and obtain //by addition.

Equation (22) can be rewritten as

x=Rf-RHxB (24)

since Z—R~l. Suppose XB is an n vector. Since x is an N
vector, it is again necessary to assume that N-n zeros have
been inserted into the vector RHxB to make Eq. (24)
dimensionally compatible. By a procedure similar to that used
to obtain Eq. (12) in the previous section, we extract a set of n
linear equations from Eq. (24) to be solved for XB

(25)
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502 WANG, KITIS, PILKEY, AND PALAZZOLO J. AIRCRAFT

where G is an n x n matrix from the product RH, and w is an n
vector. The response vector x is now computed by substituting
XB intoEq. (24).

To complete this description, we indicate how the matrices
HBB., i.e., the impedance matrices for a free-free structure at
the boundary degrees of freedom, can be calculated. Suppose
the impedance matrix for the entire structure to be attached is
Y. Then

Yu=F (26)

where u is the vector of generalized displacements and F is the
generalized force. We partition the vectors and matrices in
Eq. (26) as follows:

(27)

(28)

(29)

where the subscript 7 designates "interior" and B denotes
"boundary." With this notation Eq. (26) becomes

YIIuI+YIBuB = (30)

(31)

Solving Eq. (30) for Uj in terms of UB and substituting the
result into Eq. (31), we obtain

) UB =

Equations (21) and (32) give

(32)

(33)

The vector UB is identical to the vector XB of Eq. (25) and since
the calculation of XB is essential to the procedure described
above, the internal response u} of the added structure may
immediately be found using Eq. (30):

uI=-YjI
1YIBuB (34)

Moreover, the characteristic equation of the combined system
is

det (I+RH) =0 (35)

This formulation treats the original structure and the added
structures separately. The original system need be solved only
once. The response vector for the modified system is obtained
by solving systems of linear algebraic equations of small order
since the number of boundary degrees of freedom is likely to
be small compared to the total number of degrees of freedom.
Antiresonant vibration absorbers are a special case that can be
treated within this framework. The generalization of the
method to accept more than two added structures is
straightforward. As an application of particular interest in
helicopter engineering, the method will be used to study the
effect of adding a beam to the fuselage.

Design of Added Structures for Antiresonance
It is possible to combine the ideas presented in the preceding

two sections to design an appendant structure such that it will
create an antiresonance at a specified location on the fuselage.
Let Y be the impedance matrix for the attached system

+KA (36)

where M^is the mass matrix and KA is the stiffness matrix for
the attached structure. In this section the damping matrix C
for the original structure appearing in Eqs. (2) and (3) will be
neglected so that C = 0.

Initially fix MA and KA at some base value determined by a
set of plausible structural parameter values for the system to
be attached. Then take the design value of Y to be a per-
centage of the corresponding base value of the impedance
matrix, that is,

Y=j3(-u2MA+KA) (37)

where 0>0. Now, matrix HBB of Eq. (33) becomes &HBB and
Eq. (24) has the form

x=Rf-$RHxB

while Eq. (25) must be modified to read

(38)

(39)

But Eq. (39) is of the same form as Eq. (12). Hence by ap-
plying to Eq. (39) the procedure described following Eq. (12),
XB can be written as the ratios of polynomials in 0. Once XB is
known in terms of 0, Eq. (38) yields the remaining coor-
dinates of the response vector in terms of XB and hence in
terms of ratios of polynomials in 0. Thus to have an-
tiresonance at coordinate xk, where

=£*(£)/A(/3) (40)

all that remains to be done is to calculate the roots of gk ((3).
Provided that /3 is physically realizable (i.e., /3>0), this
procedure will determine the mass and stiffness matrices,
$MA and &KA, respectively, of the attached structure such
that xk will be an antiresonant coordinate. Note also that Eq.
(40) provides an efficient means of calculating the response
vector * as a function of the design parameter /3.

Numerical Examples
An example of local modification with increased degrees of

freedom is shown in Fig. 4. Here a uniform beam is attached
rigidly to the fuselage at DOF 29, 30 and 37,38 and is
discretized into four elements. Thus 6 degrees of freedom are
added to the original helicopter model. Using the method of
analysis presented above and varying the stiffness and mass
density of the added beam, the designer can quickly determine
the structural parameters to satisfy the design objectives.

In all of the numerical examples, the rotor frequency is
taken to be 30 rad/s, the excitation frequency 60 rad/s. The
sinusoidal force is uniformly distributed over the blades. The

Fig. 4 Helicopter fuselage with added beam.
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50

Fig. 5 Percent reduction in
vibration achieved by attaching
a beam to the fuselage.

25 27 3\ p3 35 37
FUSELAGE OOF NUMBER

39 41 43 44

27 21 31 33 35
DOF NUMBER

Fig. 6 Fuselage response when elements 12 and 19 are modified to
make DOF 31 antiresonant.

25 27 21 31

SYSTEM

—— MODIFIED SYS7£M

41

__UNMOt>IF/£0 SYSTEM

SYSTEM

33 35 37
OOF NUMBER

Fig. 7 Fuselage response when a beam is added to the fuselage to
make DOF 33 antiresonant.

25 27 29 31 33 35 37 39 41

OOF NUMBER

Fig. 8 Fuselage response when a beam is added to the fuselage to
make DOF 35 antiresonant.

physical location of the DOF numbers on the helicopter, as
well as the beam element numbers, are indicated in Fig. 1, and
the numbering scheme is as explained earlier. One particular
set of values for beam stiffness and density (Young's
modulus = 3 x 107 and density = 0.5) gives the percent
reductions in vibration shown plotted against fuselage DOF in
Fig. 5. The percent reduction figures are with respect to
fuselage response under the same loading in the absence of the
added beam. These reductions vary from 6% to 56% and only
one DOF shows an increase (5 %).

Figures 6-8 illustrate the design methods for structural
modification and for added structures, respectively. These
figures show the response of the original system and the
modified system vs fuselage DOF numbers. In Fig. 6 the
elements 12 and 19 are taken as the elements whose stiffness is
to be determined such that DOF 31 becomes antiresonant.
The response curve after modification with stiffness reduced
by 76% shows that the response at DOF 23,27 becomes am-
plified and DOF 31 becomes antiresonant as required. Note,
however, that this big reduction may weaken the structure to
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504 WANG, KITIS, PILKEY, AND PALAZZOLO J. AIRCRAFT

the point of failure. Here an appendant system design,
discussed below, would be preferable. It should be noticed
that the symmetry of the model automatically makes DOF 35
antiresonant when DOF 31 is made antiresonant by design.

In Fig. 7 the problem is to determine the stiffness and
density of the attached beam shown in Fig. 4 such that DOF
33 becomes antiresonant. The response curve after the ad-
dition of the beam shows that DOF 33 has become an-
tiresonant while the remaining response levels all lie below the
original levels. The attached beam stiffness for this case is
2.628x 107 and beam density is 0.8760. In Fig. 8 the design
requirement is to have DOF 35 antiresonant by attaching the
beam shown in Fig. 4 to the fuselage. The response curve after
the addition of the beam shows that DOF 35 and DOF 31 have
become antiresonant. This is because the modified structure is
symmetric with respect to a vertical line drawn through DOF
33. Here the attached beam has stiffness 2.607 x 108 and mass
density 8.690.

Conclusions
Two methods of design for antiresonance have been

presented. The first method is a structural modification
without increasing the number of degrees of freedom of the
original structure. The stiffness of a beam element is chosen
as a design parameter and the response of the entire structure
is determined in closed form as a function of this parameter.
The value of this parameter is then found by setting the
response function at the desired DOF equal to zero. In the
second method, the structural modification increases the
number of degrees of freedom of the original structure. The
structural properties of the added system are taken as design
variables and determined such that they create an an-
tiresonance at a desired DOF. In terms of applicability, the
first method is more suitable for designing a new helicopter,
whereas the second method is best used to modify an existing
helicopter. These methods have been demonstrated for the 44-
DOF elastic line helicopter model shown in Fig. 1.

An efficient method of analysis for systems modified by
appendant structures has been described and illustrated. The
method treats the component systems separately so that the
variation of the response as the appendant system parameters
change is calculated quickly. For this reason the method is
useful in a design by analysis approach in which the analysis is
carried out as many times as necessary until a satisfactory set

of structural parameter values is found for the appendant
system. An example of this as applied to the helicopter model
of Fig. 1 has been discussed.
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