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Solid Element Rotordynamic
Modeling of a Rotor on a
Flexible Support Structure
Utilizing Multiple-Input and
Multiple-Output Support
Transfer Functions

The authors present an improved modeling approach to analyze the coupled rotor-
support dynamics by modeling the rotor with solid finite elements (FEs) and utilizing
multiple-input and multiple-output transfer functions (TFs) to represent the flexible sup-
port. A state-space model is then employed to perform general rotordynamic analyses.
Transfer functions are used to simulate dynamic characteristics of the support structure,
including cross-coupling between degrees-of-freedom. These TFs are derived by curve-
fitting the frequency response functions of the support model at bearing locations. The
impact of the polynomial degree of the TF on the response analysis is discussed, and a
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College Station, TX 77843 general rule is proposed to select an adequate polynomial degree. To validate the 8
e-mail: a-palazzolo@tamu.edu proposed approach, a comprehensive comparison between the complete solid FE rotor- =
support model (CSRSM) and the reduced state-space model (RSSM) is presented. Com- 2

parisons are made between natural frequencies, critical speeds, unbalance response, log- S

arithmic decrement, and computation time. The results show that the RSSM provides a 2

dynamically accurate approximation of the solid FE model in terms of rotordynamic g

analyses. Moreover, the computation time for the RSSM is reduced to less than 20% of E

the time required for the CSRSM. In addition, the modes up to 100,000 cpm are compared g

among the super-element, beam element, and RSSM. The results show that the RSSM is
more accurate in predicting high-frequency modes than the other two approaches. Fur-
ther, the proposed RSSM is useful for applications in vibration control and active mag-
netic bearing systems. [DOI: 10.1115/1.4034207]

Introduction method [7-9], which accounts for the gyroscopic effects and the
asymmetric and cross-coupled stiffness coefficients of the bearing,
has been used to model rotating shafts and disks. For a short flexi-
ble rotor, in particular a thin-walled shaft with flexible disks, the
axisymmetric solid FE model is more accurate in rotordynamics
prediction than a beam FE model. Due to the dimensional limita-
tions of the 1D and 2D FEs, the 3D solid elements are widely
used to model complicated casing and support structures.
Although it is viable to use a complete solid FE model including
the rotor and support structures to perform rotordynamic analysis,
especially at the design stage, it may require a large amount of
computational resources and computation time. A remedy for this
is to model the support structures with super-elements, which con-
dense the internal degrees-of-freedom (DOFs) but retain the
DOFs of the attachment nodes that connect the rotor and support
substructures through the bearings [10].

In comparison with the solid FE and super-element models, an
experimental approach is to obtain the frequency-dependent stiff-
ness and damping of the support structure by measuring the fre-
quency response functions (FRFs) at the bearings and then include
the equivalent physical models of the structure in the analysis of
the rotor system [11]. Vazquez and Barrett [12—14] extract a series
of rational TFs from the measured FRFs of the support structure
by using identification techniques. Both unbalance response and
stability analyses of the rotor and support structure are accom-
plished with the TFs in the s-plane. Moore et al. [15] apply the 1D

The beam-type FE method has been widely used to model com-
mon shafts and yields acceptable prediction results in most cases
[1-5]. However, modern turbomachinery designs require lighter-
weight, higher-speed rotor systems, which may require thin-
walled rotors with thin disks operating at higher speeds on flexible
supports. This is especially the case with aircraft gas turbine
engines where low weight is a primary design goal. In addition,
active magnetic bearing (AMB)-mounted machines require accu-
rate prediction of the modes that are well above the operating
speed to maintain stable levitation control. It is also recommended
by API standards 617 for compressors [6] that the effects of the
support structure should be considered in analysis of the unbal-
ance response of the rotor system. One-dimensional (1D) beam-
type FEs may be inadequate for modeling support structures with
complex shapes and may also fail to provide accurate prediction
of high-frequency modes when rotors become thin walled or when
disk modes become important. Moreover, the isolated support
impedance approaches may introduce errors if modeling support
structures that have modes that are highly coupled between bear-
ings and directions at the bearing locations.

An alternative approach is to utilize the solid FE method, which
provides a flexible and accurate means for modeling coupled
rotor-support dynamics. The 2D axisymmetric solid harmonic FE
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beam FE and 3D solid FE in modeling the rotor and housing of a
large industrial turbocompressor, respectively, and develop point
TFs to investigate the effects of the housing on the rotor system.
In the work by De Santiago and Abraham [16], the power turbine
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that is commonly used in the oil and gas industries as a mechani-
cal driver is modeled with solid elements, and the comparison
with the complete rotor-support FE model shows that the simpli-
fied structure model utilizing the support TFs is applicable in the
rotordynamic analysis.

This paper presents an alternative modeling approach for a
complete rotor-support system, which takes advantage of both axi-
symmetric solid FE rotor model (accurate prediction of the
dynamics of a rotor with complex shapes) and simplified support
structure model utilizing the multiple-input and multiple-output
(MIMO) support TFs (reduction of the computation time and
requirement for computational resources). A thin-walled shaft
with multiple flexible disks is modeled using the axisymmetric
solid harmonic FE method. The flexible structure supporting the
rotor is first modeled with solid elements, and then the bearing
location FRFs are determined by calculating the corresponding
receptances over the frequency range of interest. Subsequently,
the corresponding FRFs of the support structure are obtained by
using the curve-fitting technique [17]. Guidance is provided for
selecting an adequate polynomial degree of the TFs of the support
structure. The TFs representing the support structure are rear-
ranged to constitute a TF matrix, which contains the necessary
information for unbalance response and stability analysis of the
entire rotor system. The TF matrix is further transformed into a
state-space form. In general, however, the support TF model is
MIMO, implying that the way of transforming the TF into the
state-space form for a single-input and single-output (SISO) sys-
tem [18] needs modifications. Finally, the state-space support
model is connected with the rotor FE model by bearing forces.

The proposed RSSM that consists of a solid FE rotor model and
a state-space support model is compared with the CSRSM. Gen-
eral rotordynamic analyses, such as natural frequencies, critical
speeds, unbalance response, and logarithmic decrement (log dec),
are compared in order to demonstrate the accuracy of using the
RSSM in lieu of the CSRSM. In the meanwhile, the computation
time is provided to show whether the proposed modeling approach
is effective in model reduction. Furthermore, a thorough compari-
son of the rotor-support modes up to 100,000 cpm (~1667 Hz) is
conducted among the RSSM, the solid FE rotor with a super-
element support model (SRSSM), and the beam FE rotor with a
solid FE support model (BRSSM).

Rotor Model

The solid model of an axisymmetric rotor can be reduced to a
2D plane (semisection of the rotor) model by using the axisym-
metric harmonic FE method. As pointed out in Ref. [10], the 3D
rotor may be formed in such a way that the displacements of the
semisection plane are expanded circumferentially about the sym-
metric axis by following the Fourier series. The semisection area
of the rotor, which is demonstrated in Fig. 1, is filled by triangular
elements. The radial and axial displacements are correlated with
the circumferential angle 0 by

mi-Section Plane =
B Xr u;

Fig.1 Axisymmetric solid FE model of a hollow rotor
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where N,,; represents the shape functions of the three-node trian-
gular element with the subscripts i = 1,2,3 indicating the three
nodes. The harmonics m = 0, 1 are selected to account for gyro-
scopics and asymmetric and cross-coupled stiffness coefficients of
the bearing. The resultant displacements of the rotor element in
the radial, axial, and tangential directions, u,, u. and uy, are the
sum of uy,;, ty,,, and u,,g, respectively, for all harmonics. The rotor
FE model may be described by

[Mg]{Ur} + [Gr]{Ur} + [KrJ{Ur} = {fr} ®)

where [Gg] represents the gyroscopic matrix. The specific formu-
lation of Egs. (1) and (2) is provided in Ref. [9].

The Guyan reduction method [19] is used to reduce the rotor
FE model and enhance the computational speed. Regarding the
selection of retained DOFs for the Guyan reduction, a general rule
is to retain the DOFs with large inertia, damping, or external load.
The dynamic model described by Eq. (2) can then be rearranged
to yield the following state-space form

{dr} = [Ar{ar} + Bre]{fs} + [Brul{fu} 3)
{yr} = [CrRl{ar} )

where {fg} and {fy} represent the bearing force vector and unbal-
anced force vector (any external load including unbalanced force),
respectively. {qg } is the state variable vector, and {yy } are the dis-
placements of the rotor at the bearing attachment points. All matri-
ces and vectors in Egs. (3) and (4) are given in the Appendix.

Support Structure Model

The support structure including the bearing pedestal is first
modeled with solid tetrahedron elements. Then, the fictitious
node, which corresponds to the attachment point of each bearing,
is created to connect the rotor and support structure. As can be
seen from Fig. 2, each fictitious node is connected by the rigid and

Zoom in

Fictitious
nodes

g ”“4”'/”””’0.8
s

<
o2 Xhalm

005 0 005 O
Y (m)

Fig. 2 Solid tetrahedron element mesh model of the support
structure with two fictitious nodes
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massless beams (a fictitious beam web) with the nodes that are cir-
cumferentially around the bearing center. In calculation, these
rigid beams can be treated as the ones with the stiffness coeffi-
cients that are much higher than the modulus of elasticity of the
support structure. The dynamics of the support FE model may be
written as

[Ms]{Us} + [Cs]{Us} + [Ks]{Us} = {fs} Q)

where [Cs] denotes the proportional damping matrix of the sup-
port structure.

Concerning the type of solid elements, the model with the hexa-
hedron elements normally has a smaller size than that with the tet-
rahedron elements, thereby requiring less computation time.
However, this may not be true if the shape of support structure is
complex or the time for meshing is counted in the total simulation
time, in which case it usually takes more time to generate the hex-
ahedral mesh than the tetrahedral mesh, particularly at the boun-
daries. Hence, the influences of the solid element types are not
quantified in the present paper.

The FRFs are obtained by using the support FE model instead
of experimental measurement. First of all, we apply a virtual point
force (in a sinusoidal form) at one fictitious node, which is repre-
sentative of the bearing center. Then Eq. (5) is solved for forced
responses at all bearing locations and in all directions. Take the
support model shown in Fig. 2, for instance. One point force, F, is
acted at one bearing location in one direction (indicated by the
subscript Y or Z) and yields four responses, Uy,, Uz, Uy,, and Uy,
(one response for one bearing location and one direction). The
responses can be finally correlated with the forces by the follow-
ing equation:

Uy Gyiri Gvizi Gyira Gyin Fyi
Uzt | _ |Gzt Gzizi Gz Gziza | | Fz )
Uy Gyxyy1 Gyazi Gryara Gy Fy,
Uz Gnvi Gznzi Goyy Gon Fz

where G is the FRF, and the subscripts 1 and 2 represent the first
(left) and second (right) bearing locations shown in Fig. 2,
respectively.

By utilizing the complex curve-fitting algorithm [17], we are
able to obtain from the FRFs the rational TF that corresponds to
the location and direction of each force-response pair. The optimal
polynomial coefficients of the TF are obtained by minimizing the
weighted sum of the squares of the amplitude errors between the
frequency-dependent functions and polynomial ratios. The mini-
mization of the errors depends on both sampling quality and poly-
nomial degree of the TF. Two guidelines for acquiring an
effective set of sampling frequencies are provided. The first is that
the number of excitation frequencies should be sufficient to retain
the dynamic information (amplitudes and phases) of the response
in the neighborhood of the frequencies with a dramatic amplitude
or phase change. Second, the final frequency sample should be the
union of the frequencies of all the sixteen FRFs. A general rule
for the selection of the polynomial degree is to ensure that the
curve fit retains the peaks and shifts of the TF amplitude or phase
while avoiding a higher polynomial degree than needed. This is
because high-degree polynomials can be highly oscillatory, which
may include undesired information, such as noises in modal test-
ing. The derived TFs in the s-plane may be expressed as

bis" +bys™ ! 4 4 by
Gain(9) = =g v T 1 T a M

where the subscripts A, B indicate Y or Z, and i,j =1 or 2. For
simplicity, the TF matrix in Eq. (6) is written as [G(s)].

It can be clearly seen that [G(s)] is a MIMO system. We may
derive each SISO state space from the individual TF, G4;5,(s), and
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stack the state-space matrix into the corresponding block of the
MIMO state space. There is the possibility that the final MIMO
system is not a minimal state-space realization, leading to extra
states and eigensolutions. Several theoretical approaches [20-22]
may help to resolve this problem. A practical approach is to iden-
tify repeated modes by inspection of the mode shapes and fre-
quencies. The final state-space support model can be expressed as

{ds} = [As]{gs} + Bs]{fs} (®)
{¥s} = [Csl{as} )

where {fg} is the bearing force vector, {ys} are the displacements
of the support at the bearing attachment points. [As], [Bs], and
[Cs] represent the system matrix, input matrix, and output matrix,
respectively, and these three matrices can be obtained by trans-
forming [G(s)] into a state-space form. The detailed composition
of these matrices is given in the Appendix. {qg} is the state vari-
able vector that consists of purely mathematical variables without
physical meanings. It can be seen from the Egs. (8) and (9) that
the support model is substantially reduced by utilizing the TFs
and state-space model as the number of state variables is consider-
ably smaller than the DOF number of the support structure.

System (State Space) Model

The rotor and support structure are connected by bearings, or
more precisely, by bearing forces. The different forms of bearing
forces that are written in Egs. (3) and (8) can be correlated by

{fs} = —{fs} 10)

With regard to most of the fluid film bearings, the bearing forces
at a certain rotating speed may be applied to the rotor in the form
of

FB:CB'UB+kB‘UB (11)

where Uy is the relative displacement between the rotor and sup-
port structure. Therefore, the general bearing forces can be
derived from

{fs} = —[Co]({¥r} — {¥s}) — Ks]({y} —{ys}) (12

Substituting Egs. (10) and (12) into Egs. (3), (4), (8), and (9)
yields

[Arl{q} = Brl{a} + Burl{fu} (13)

With Eq. (13) representing the entire state-space model of the
rotor-support system, stability analysis of the system can be con-
ducted by using the characteristic equation

d(s) = Isl] — [Ar]| = 0 (14)

If there are positive real eigenvalues or negative log dec, the rotor
system is unstable. Additionally, unbalance response of the rotor
can be obtained by substituting {f;}¢/*’ for {fy;} into Eq. (13),
which yields

(jo[Ar] — Br]){a} = Burl{fu} (15)

where {q} represents the complex state vector in the state-space

model, {f' v} is the complex unbalanced force vector, and o is the
frequency of the unbalanced force.

Validation

To validate the modeling approach proposed in this paper, a
scaled-down rotor-support system, which is modeled with either

JANUARY 2017, Vol. 139 / 012503-3
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the solid elements or both solid elements and TFs, is presented for
investigation and comparison. The rotor consists of a thin-walled
shaft and three disks and is supported by two tilting pad bearings.
The axisymmetric harmonic FE method is used to model the thin-
walled rotor, which is depicted in Fig. 3. The material properties
of the rotor are set as p = 780()kg/m3, v=03, E=2.1
x10'""N/m?. The stiffness and damping of the bearings are
obtained from a specialized bearing coefficient-prediction pro-
gram and are given in Figs. 4 and 5. The structure supporting the
rotor is composed of a bearing pedestal and a baseplate with four
feet fixed to ground. The material properties of the support

0.05"
E =
>
-0.05' i
01 02 03 04 05 06 07
X Axial (m)
Bearings
0.05.
E o0
N 0.05.| e
el T
005 > e o3 04
Y(m) 005 o, 02 X Axial (m)

Fig.3 Cross section (top) and 3D solid (bottom) FE mesh mod-
els of the rotor supported by two tilting-pad bearings

1.0E+9
E —a—Kyy
Z 1.0E+8
‘2 = a- ——Kyz
:g 1.0E+7 R
5
Q 1.0E+6 -m-Kzz
g

1.0E+5 = -~
?E =
&

1.0E+4
0 3000 6000 9000 12000 15000
Rotational speed (rpm)

Fig. 4 Stiffness coefficients of the bearing
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Fig. 5 Damping coefficients of the bearing
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structure are given as p =2700kg/m?, v =033, E=6.9
x10''N /m?. Tetrahedron elements are used to model the support
structure. The CSRSM is demonstrated in Fig. 6.

Grid Sensitivity and Curve-Fitting. Before the FE simulation
results can be used for comparison, a grid sensitivity test on the
CSRSM is conducted in order to validate the solid FE modeling.
The damped natural frequencies of the third mode of the rotor-
support system are calculated for comparison and are presented in
Fig. 7. It can be seen that the percentage difference of the natural
frequencies, compared to the natural frequencies obtained from
the finest mesh, varies from 36.3% to 1.2%, which indicates that
the natural frequencies converge with the refinement of mesh of
the rotor and support. Therefore, the FE model with a 1.2% differ-
ence can be used as a benchmark in evaluation of the proposed
modeling approach.

The FRF data are obtained by applying frequency-dependent
load (sinusoidal forces) on the fictitious bearing attachment points
of the support FE model. The TFs are subsequently obtained by
curve-fitting these FRF data with polynomials, where extra atten-
tion needs be given to the polynomial order selection. Consider
the curve-fitting with the lower degree TFs like the second-order
numerator divided by third-order denominator (second/third) pol-
ynomials. It is found that not all the sixteen TFs in Eq. (6) are
well fitted. Take Gz,2,, for example. The curve fit shown in Fig. 8
fails to capture the exact frequency (150 Hz) of the amplitude
peak, where the rotor and support structure vibrate vertically
(refer to the bottom figure shown in Fig. 11). Since G2z, repre-
sents the TF between the excitation force and response in the ver-
tical direction at the right bearing location, the shifting of the
critical frequency of Gzyz probably leads to shifted vibration
peaks or extra peaks. In order to solve this problem, a higher

e 04
02 x Axial (m)

Fig.6 Solid FE mesh model of the rotor-support system

12000 36.3%

11000

10.8% 0.335 0.34

Damped Natural Frequencies {cpm)

10000 X Axial [m]
9000
8000
0 10000 20000 30000 40000 50000
The Number of Elements of the Support FE Model
0 1200 2400 3600 4800 6000

The Number of Elements of the Rotor FE Model

Fig. 7 Grid sensitivity test for the third mode of the CSRSM at
the rotational speed of 5000 rpm
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Fig. 8 Transfer function Gz,z> with the second/third and fifth/
sixth polynomials

polynomial degree (fifth/sixth) is employed. As Fig. 8 shows, the
fifth/sixth TF perfectly fits the original FRF curve.

For simplicity, the detailed TF matrices are not provided. After
converting the TF matrices into a state space, the matrix formulas
provided in the preceding sections are employed to combine the
state-space model of the support structure with the rotor FE
model.

Comparison of Rotordynamic Analyses. Simulation results
of commonly applied rotordynamic analyses, such as the critical
speed map, unbalance response, and log dec, are presented in
Figs. 9-19.

In regard to the rotor-support system, the first four critical
speeds to appear within the rotating speed range of 0—15,000 rpm
are presented in Figs. 9 and 10, with the corresponding mode
shapes shown in Figs. 11 and 12. As can be seen from Fig. 9, the
first critical speed is 3140 rpm for the CSRSM and 3125 rpm for
the RSSM. That is to say, the percentage difference of the first
critical speeds between these two models is less than 0.5%. The
second and fourth critical speeds obtained from the proposed
RSSM are 3455rpm and 13,769rpm, respectively. For the
CSRSM, they are 3455rpm and 13,771 rpm, respectively. As
demonstrated in Figs. 9 and 10, the natural frequency lines for
these two modes nearly coincide with each other. The third criti-
cal speed of the RSSM is 8748 rpm with a 0.6% difference from
8805 rpm of the CSRSM. The close agreement confirms the accu-
racy of the proposed modeling approach compared with the
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S 3500 i
@ W —4&— Mode 1
= ' RSSM
S 3400 !
(]
3 . - -Mode 2
HqL_J 3300 : CSRSM
© ]
5 ! —e— Mode 2
= 3200 '
s " RSSM
T 3100 ' -
4 : == =Synch-
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o 3000 : Line

0 2500 5000 7500 10000 12500 15000
Rotational Speeds (rpm)

Fig.9 Critical speeds for the first and second modes
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Fig. 10 Critical speeds for the third and fourth modes
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Fig. 11 Mode shapes for the first (top), second (middle), and
third (bottom) critical speeds of the rotor-support system

complete solid FE modeling approach, in terms of the natural fre-
quency prediction.

To further validate the RSSM, unbalance response analysis is
performed. The unbalanced mass distance of 25 g - mm is attached
to the center of the middle disk. The peak-to-peak (p-p) unbalance
response of the rotor at the middle disk and two bearing locations
is demonstrated in Figs. 13—18. It can be clearly observed that the
vibration amplitudes of the RSSM agree with those of the
CSRSM. The highest vibration peaks at each of those three loca-
tions all occur at the speed of 3125 rpm (the first critical speed) or
3450 rpm (near the second critical speed). At the speed of
8830 rpm (close to the third critical speed), violent vibrations
appear in the vertical direction, whereas the horizontal vibrations
are much milder. This may be attributed to the mode coupling in

JANUARY 2017, Vol. 139 / 012503-5
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Fig. 12 Mode shape (top: orthographic projection, middle:
front view, bottom: top view) for the fourth critical speed of the
rotor-support system
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Fig. 17 Horizontal magnitude of the unbalance response at the
right bearing location

the vertical direction between the rotor and support structure, as
can be seen from the bottom mode shape depicted in Fig. 11. At
13,800 rpm (near the fourth critical speed), however, vibrations
peak in both vertical and horizontal directions. This can be
explained by the mode shapes shown in Fig. 12, where the rotor
and support structure are not only coupled in the vertical direction
but in horizontal direction as well, thereby leading to both vertical
and horizontal vibration peaks.

Apart from the unbalance analysis, stability of the rotor system
is always one of the primary concerns in rotordynamic analyses.
The log dec of the rotor system, which is commonly used in the
turbomachinery industry to determine the dynamic stability, is
calculated and compared in Fig. 19. For the first, third, and fourth
modes, the percentage difference of the log dec between the
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Fig. 18 Vertical magnitude of the unbalance response at the
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Fig. 19 Stability analysis of the rotor-support system

RSSM and the CSRSM is within 3%. With regard to the second
mode within the operating speed range, the largest difference is
15%, which occurs at the speed of 15,000 rpm. In general, the
RSSM shows good agreement with the CSRSM.

Comparison of Computation Time. In order to demonstrate
the computational efficiency of the proposed approach, the com-
putation time is compared among the CSRSM, RSSM, SRSSM,
and BRSSM. Before comparison, the Guyan reduction method is
applied to all the FE models, retaining 10% DOFs of each model.
The comparison, as illustrated in Table 1, is made between the
simulation time required for obtaining the eigenvalues of the low-
est 100 modes of the rotor-support system. The simulation is per-
formed on the HP Z420 workstation with a 3.7 GHz Quad-core
Intel Xeon CPU and 48 GB RAM.

For the CSRSM, it takes 14 min to obtain the eigenvalues at
each rotational speed. In contrast, the RSSM requires only 2.5
min. The reduction of the computation time benefits from the

substantial reduction of the solid FE support structure model from
2537 DOFs to the 96 x 96 (96 DOFs) state-space model that cor-
responds to the fifth/sixth TFs of the support structure. Generally,
rotordynamic analyses will be conducted at dozens of different
rotational speeds, due to the gyroscopic effects, the change of the
bearing or seal coefficients, etc. Also, both the mesh generation
and the calculation of the FRFs are performed only once. There-
fore, by counting the total simulation time, the RSSM is nearly
five times faster than the CSRSM. This time reduction factor will
increase with less DOFs of the rotor model and more DOFs of the
support structure model as the RSSM mainly retains the DOFs of
the rotor model.

In addition to the comparison with the solid FE model, the
RSSM is compared with the SRSSM and BRSSM. As Table 1
shows, the computation time is 2.5min for the RSSM versus
3min for the BRSSM. This can be explained by the larger total
number of DOFs of the BRSSM, i.e., the sum of DOFs of the
beam FE rotor model (38 DOFs) and the solid FE support struc-
ture model (2537 DOFs) is more than the DOFs of the RSSM
(2146 DOFs in total). In regard to the SRSSM, the reduced sub-
structure (support structure) is assembled together with the rotor
FE model via two bearing attachment points that are exterior to
the super-element support model.

As illustrated in Table 1, either the computation time or the
time for mesh generation is quite close between the RSSM and
the SRSSM. Although the state-space support model seems to
have many more DOFs (96 DOFs) than the super-element support
model (6 DOFs), the computation difference between these two
models is in practice less than three seconds on account of having
nearly the same total number of DOFs (2146 DOFs versus 2056
DOFs).

Comparison of Higher-Frequency Mode Predictions. In
contrast with the slight advantage of the SRSSM in computation
time, the predictions made by the SRSSM are probably less accu-
rate than the RSSM for some higher-frequency modes. To prove
this, both the RSSM and the SRSSM are compared with the
CSRSM in terms of natural frequencies. The BRSSM is also
included in this comparison in order to show that the proposed
modeling approach is more accurate than the beam rotor model in
higher-frequency modes.

For the rotor-support system with the rotor spinning at
10,000 rpm, the natural frequencies of the modes up to 100,000
cpm (~1667 Hz) are given in Table 2. It can be seen that nearly
all the natural frequencies of the RSSM are in close agreement
with those of the CSRSM.

As for the SRSSM, most of the modes are in accordance with
those of the CSRSM, except that modes 7 and 13 are inaccurately
predicted (64% and 32% differences, respectively) and modes 15,
16, 17, and 20 are missing. The reason for these inaccurate or
missing modes can be found in Fig. 20. As the top figure shows,
the rotor and support are coupled in mode 7. It is likely that the
support structure is over-reduced by using the super-element. As a
result, the dynamic characteristics of the support structure modes
that have a complex mode shape like mode 7 may not be perfectly
represented by the support super-element model. In addition, the
super-element support model fails to predict some of the

Table 1 Simulation time for obtaining the eigenvalues of the lowest 100 modes of the rotor-support system with 10% DOFs

retained

CSRSM RSSM SRSSM BRSSM
Rotor model 2050 DOFs 2050 DOFs 2050 DOFs 38 DOFs
Support model 2537 DOFs 96 x 96 state-space matrix (96 DOFs) 6 DOFs 2537 DOFs
Total DOFs 4587 2146 2056 2575
Time for meshing 2 min 2 min 2 min 1.5min
Computation time per speed 14 min 2.5min 2.5min 3 min
Time for obtaining FRFs Smin

Journal of Engineering for Gas Turbines and Power

JANUARY 2017, Vol. 139 / 012503-7

~di16/1.882/19/£05Z 1 0/1/6€ L /3pd-aloie/Iemodsaulqiniseb/Bio swse  uonos|jooleybipswse;/:dyy wol papeoju

10 6€EL

d'€05Z10

USY0) BSEI; P!

 1snbny g0 uo Jasn Aysienlun N @ v sexal Aq GazezAwuyDIzoeEADWdgdIAqsb T HISXGANMATEMINALANIZYEIbML HANAIOZMYOWO-OUNEY:YYVYYI0D I TVIbXY



Table 2 Natural frequencies of the rotor-support system at the rotational speed of 10,000 rpm

Natural frequency (cpm) CSRSM RSSM SRSSM BRSSM

Mode 1 3091 3086 (0%) 3092 (0%) 3171 (3%)
Mode 2 3485 3485 (0%) 3490 (0%) 3586 (3%)
Mode 3 8719 8705 (0%) 8868 (2%) 8809 (1%)
Mode 4 14,323 14,315 (0%) 14,509 (1%) 14,660 (2%)
Mode 5 17,471 17,451 (0%) 17,818 (2%) 17,748 (2%)
Mode 6 19,081 19,081 (0%) 19,081 (0%) 19,484 2%)
Mode 7 21,615 21,430 (—1%) 35,391 (64%) 21,672 (0%)
Mode 8 29,588 29,584 (0%) 29,609 (0%) 31,137 (5%)
Mode 9 33,037 33,037 (0%) 33,037 (0%) 33,812 2%)
Mode 10 37,350 36,986 (—1%) 40,213 (8%) 37,615 (1%)
Mode 11 41,473 41,422 (0%) 41,836 (1%) 42,621 (3%)
Mode 12 42,392 42,407 (0%) 42,554 (0%) 47,608 (12%)
Mode 13 47,938 49,359 (3%) 63,414 (32%) 47,960 (0%)
Mode 14 60,550 60,560 (0%) 60,549 (0%) 67,418 (11%)
Mode 15 64,606 67,945 (5%) N/A 64,717 (0%)
Mode 16 70,190 67,914 (—3%) N/A 70,224 (0%)
Mode 17 76,890 90,004 (17%) N/A 76,892 (0%)
Mode 18 78,786 79,436 (1%) 93,125 (18%) 80,184 (2%)
Mode 19 85,458 85,458 (0%) 85,457 (0%) 95,523 (12%)
Mode 20 89,814 106,427 (18%) N/A 104,394 (16%)
Mode 21 89,923 90,772 (1%) 91,865 (2%) 88,171 (—2%)
Mode 22 91,451 91,395 (0%) 91,349 (0%) 97,181 (6%)
Mode 23 98,168 98,495 (0%) 98,771 (1%) 104,318 (6%)
Mode 24 98,865 98,958 (0%) 117,339 (19%) 100,618 (2%)
Mode 25 100,889 100,948 (0%) 101,033 (0%) 111,100 (10%)

Note: % denotes the percentage difference compared to the CSRSM. N/A indicates that the mode cannot be obtained.
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Fig. 20 Mode shapes of the solid FE rotor-support model cor-
responding to modes 7 (top) and 16 (bottom) in Table 2

0.2 03 0.6 0.7 0.8

04 05
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Fig. 21 Mode shape of the solid FE rotor-support model corre-
sponding to mode 12 in Table 2

high-frequency support structure modes like mode 16 (bottom fig-
ure in Fig. 20), when the mode shape is more complicated. This
can be remedied by dividing the support structure into more than
one substructure. For example, the bearing pedestal could be sepa-
rated as a substructure, or even the baseplate could be divided into
several segments. However, the selection of substructures greatly
depends on people’s experience and may sacrifice the modeling
time for accuracy.

012503-8 / Vol. 139, JANUARY 2017

With regard to the BRSSM, the prediction is fairly accurate
(within 10% difference) for the lower-frequency modes but
slightly inaccurate (10-20% difference) for the higher-frequency
modes. This may be caused by the violation of the assumption in
the beam theory that the plane sections remain plane after defor-
mation. As can be observed from Fig. 21, the segments of the
shaft between the disks are severely bending, which may result in
the nonbeam deformation (i.e., the shaft sections are not plane
after deformation).

From the comparison of the modes well above the operating
speed range, it can be briefly concluded that the RSSM is more
accurate than the SRSSM and BRSSM for the higher-frequency
modes. Since the practical bandwidth of interest for AMB control-
lers is above 1000 Hz, the RSSM would be a good replacement of
the SRSSM or BRSSM for the AMB-mounted turbomachinery.
Moreover, the AMB controller can be easily integrated into the
RSSM.

Summary and Conclusions

An improved rotordynamic modeling approach for a rotor-
support system is proposed in the present paper. Instead of using
the beam FEs, the rotor is modeled with the axisymmetric solid
harmonic FEs, and the Guyan reduction method is applied to sim-
plity the solid FE rotor model. The structure supporting the rotor
can be represented by the TFs that are derived from the solid FE
support model or measured FRFs of the substructure at the bearing
locations. The way to find the curve fit for the FRFs of the support
structure is also investigated. The frequency sampling and the
polynomial degree of the TF are significant for the quality of
curve-fitting. More specifically, a good excitation frequency sam-
ple should contain the response information in the neighborhood
of the frequencies with a dramatic amplitude or phase change and
should be the union of the frequencies of all the FRFs. In the
meanwhile, the polynomial degree of the TF is better selected in
such a way that the peaks and shifts of the TF amplitude or phase
angle are retained by the curve fit with as a low polynomial degree
as possible.

The TF matrix is further transformed into a state-space form
and integrated into the rotor FE model. With the benefit of the
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state-space form, controllers, actuators, and AMBs may be inte-
grated in the rotor system.

To validate the proposed modeling approach, a thin-walled
rotor with a flexible support is modeled using both the CSRSM
and the RSSM. First, the RSSM is compared with the CSRSM.
The comparisons made between natural frequencies, critical
speeds, unbalance response, and log dec show that the RSSM pro-
vides a dynamically accurate approximation of the high-fidelity
solid FE model. Furthermore, the comparison of the computation
time shows that the proposed modeling approach is five times
faster than the complete solid FE method in terms of the eigen-
value calculation. This time reduction factor may vary with the
different number of DOFs of the rotor model and the support
structure model.

Then, both the SRSSM and the BRSSM are included, together
with the RSSM, in comparison of the modes up to 100,000 cpm
(~1667Hz) of the rotor system. The results confirm that the
RSSM is more accurate in predicting the higher-frequency modes
than the SRSSM and the BRSSM.
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Nomenclature

A}, A, = attachment nodes of bearing 1 and 2
[Brg], [Bru] = matrices transforming bearing force and unbal-

anced force acted on the rotor from Cartesian
coordinates into polar coordinates, respectively

BRSSM = beam FE rotor with a solid FE support model

CSRSM = complete solid FE rotor-support model

¢, k = damping (N - s/m) and stiffness (N/m) coeffi-

cients of the bearing, respectively

DOF = degree-of-freedom

E = modulus of elasticity (N/m)
e = base of natural logarithm
F = external force (N)
Fgy, Fpz = bearing forces in Y and Z direction, respectively
(N)
FE = finite element
FRF = frequency response function

{f} = external load vector (N)

{fg} = bearing force vector (N)

{fy} = unbalanced force vector (N)

Gyipj = frequency response function corresponding to the
force acted on the bearing j in B direction and the
response at the bearing i in A direction

[GRr] = gyroscopics matrix
[G(s)] = MIMO transfer function matrix
ith/jth = ith-order numerator divided by jth-order
denominator
J = imaginary component
[M], [C], [K] = mass, damping, and stiffness matrices,
respectively
MIMO = multiple-input and multiple-output
p-p = peak-to-peak
g = state variable
RSSM = reduced state-space model
SISO = single-input and single-output
SRSSM = solid FE rotor with a super-element support model
s = complex variable
TF = transfer function
U = displacements/DOFs (m)
u,, u,, ug = elemental displacements in the radial, axial, and
tangential directions, respectively (1)
{y} = displacement vector in the Cartesian coordinates
(m)
p = density (kg/m?)

Journal of Engineering for Gas Turbines and Power

v = Poisson’s ratio
w = excitation frequency of the unbalanced force
(rad/s)

1/2/3-D = one/two/three-dimensional

Subscripts
B = bearing
B1, B2 = bearing 1 and 2
mS, mA = symmetric and antiSymmetric components in mth
harmonics, respectively

R = rotor
r, z, 0 = radial, axial and circumferential directions,
respectively

S = support structure
T = entire state-space model of the rotor-support
system
U = unbalance
X,Y,Z =X, Y and Z directions in the Cartesian coordi-
nates, respectively

Superscripts

A1, Az, B=nodes A, Ay, and B on the rotor, respectively
- = derivative of time
"= in the complex form
Appendix

The variables in the state-space model of the rotor and support
are defined as follows:

U
fa) = | o8 (A1)
{Ur}
(Ag] = [[MRWCR} ~Me)' K] )
( (0]
[Brg] = [Mg]__[Bre] (A3)
I 0]
1 100 Upls
00 1 1 Ups
1 00 0 Ul
[Brei] = corresponding to : (A4)
0010 U
0100 U,
0 0 0 1 Ui,
Fgy1
Fpz1
{fs} = (A5)
Fgy,
Fgz
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0] (A6)
1 UB
[Brui] = | 1 0| correspondingto | U% (A7)
01 UlBrA
FB
o} = | 1| (*8)
Uy
[Cr] = [[0] | [Cra]] (A9)
- - I —
1100 Upls
0 0 1 1 Ugfs
1000 Ut
[Cro] = : corresponding to : (A10)
0010 U
0100 Uiy
0 0 0 1 U,

In the state-space support model, [As], [Bs], and [Cs] are the
minimal realization of the corresponding state-space matrices
[As], [Bs], and [Cs], which may be expressed as

o w80
[As] = [0] [01] [Aaiv2]  [0] (Aib
(0] [0] [0] [Aaiz2]
[A[YOI]BJ»] [Am} ] {g} {g}
[Anini] = [0] (0] J [Avop]  [0] (A2
(0] (0] 0] [Azg]
[Bﬁu [B[O} } {g} {g}
[Bs] = [0] [01] Baiv2]  [0] (A1
0] 0] 0]  [Baiza
[[ngBj]]
[Baigj] = [B\Z{;:] (A
[Bz2sj]
[Cs] = [[Cami] [Cam] [Caa] [Cazl]  (A19)
[Caini] = [0] [0] : [Cyopi] 0] (1o
(0] (0] 0] [Cz]

where the subscripts A, B indicate Y or Z, and i,j=1 or 2. The
entries of the state-space matrices shown in Egs. (A12), (A14),
and (A16) are derived from the TFs G;p(s) individually.
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Suppose that there are two bearings involved (can be extended
to any number), then the damping and stiffness matrices of the
bearings are defined as

Cyy1  Cyzi 0 0
(Co] = | & Cai 0.0
00 Cyy2  Cyz
(A17)
0 0 Czva  Czzo

Kg) = | Kt Kz i 0.0
0 0 kyys  kyz (A18)
| 0 0 kzya  kzz
[ Urr1 ]
Urz1,
{YR}— Urya (A19)
Urz
[ Usy:
_ | Uszi.
{yS } - USYZ (AZO)
Usz

_ | 1] + [Bre][CB][Ck]
[Ar] = { B CallCal

—[Bgg)[Cs][Cs] } (A21)
[I] + [Bs][Cg][Cs]

By] = {[AR] — [Bre][Kg][Cg] [Bra][Kz][Cs] }(A22)

[Bs][Kg][Cr] [As] — [Bs][Kg][Cs]
Bur] = {[B[Sﬂ (A23)
P T—

where the state variable vector of the support structure {qg}
accompanies the generation of the matrices [Ar] and [Br] and has
no physical meanings.
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