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A B S T R A C T

Concentration polarization and surface fouling may be two of the most remarkable features in the pressure-
driven membrane filtration process. A new numerical simulation model is proposed in this paper to study the
concentration polarization (CP) and the inorganic fouling growth. The numerical study is based on the lattice
Boltzmann method (LBM), which allows a simultaneous solution of the Navier–Stokes equations and the con-
vection-diffusion equation. Simulation results are verified by comparisons with published CP and permeate flux
data under the same operating conditions. Then the model is extended to predict CP in a spacer filled desali-
nation channel. The prediction result indicates that there is a higher fouling potential near the spacer filaments
due to higher CP values in that area. Coupling of the CP prediction model with gypsum growth kinetics provides
an approach to study the inorganic fouling growth on the membrane surface at a single crystal level, with respect
to a given solution supersaturation near the membrane surface. Predicted equivalent radius and accumulated
mass of the growing gypsum crystal, under the effects of growth retardation by bicarbonate, agree with pub-
lished test data and analytical results. The presented numerical model enables a direct evaluation of the impacts
on the surface crystal development in the presence of antiscalants. This numerical model can be applied to
identify suitable operating conditions, assist in dose selection of antiscalants when required properties are
available, and predict the fouling mitigation effects in the pressure-driven membrane filtration process.

1. Introduction

Countries with limited water resources and rapid population growth
are facing an increased fresh water shortage. One effective approach to
address the fresh water shortage lies in coordinating water manage-
ment, water purification, and water conservation [1]. The two most
commercially successful water purification techniques include the
thermal evaporation and the membrane separation. Pressure-driven
membrane separation techniques (e.g. microfiltration (MF), ultra-
filtration (UF), nanofiltration (NF), and reverse osmosis (RO)) in par-
ticular have been the preferred methods for wastewater treatment and
saltwater desalination. By 2010, pressure-driven membrane operations
constituted 38%, 87% and 79% of the total water production from
seawater, brackish water and wastewater, respectively (by desalination
or reclamation) [2]. However, the performance of the pressure-driven
membrane separation is still limited by several aspects. These limita-
tions include the operating cost (such as the energy consumption),
surface fouling, and membrane replacement. Membrane lifetime and
permeate flux are primarily affected by CP and membrane surface

fouling [1]. Some believe that the rapid decline of permeate flux over
time as a result of membrane fouling, especially the inorganic fouling
[3], is a major obstacle for wide application of the membrane separa-
tion approach [4,5]. Membrane fouling causes a reduced productivity,
deteriorated permeate quality, increased energy consumption thus
higher treatment cost, and a shorter membrane life span [6]. Despite
the extensive studies in concentration polarization of fouling formation,
the fundamental mechanisms in terms of the fluid dynamics and the
mass transport for the CP and the fouling growth are not fully under-
stood.

RO membrane fouling is a complicated problem affected by a
number of complex physical and chemical parameters. A. Fane et al. [6]
summarized these factors into three categories: feed water character-
istics, membrane properties, and hydrodynamic conditions. The in-
herent CP plays a vital role in triggering the surface fouling, as it leads
to elevated solute concentrations near the membrane surface. CP arises
when a portion of water solvent passes through the membrane and the
rejected solute ions tend to accumulate in the vicinity of the membrane
surface. A steady-state concentration gradient will be established when
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the solute convection process is balanced by the solute back-diffusion
process. The development of CP in a membrane channel is affected by
the local hydrodynamic conditions and mass transport conditions. Thus,
CP depends on operating conditions, and is very difficult to observe
experimentally [7]. Thus, numerical prediction of solute CP for specific
membrane filtration cases is crucial for the performance prediction and
the process improvement [8].

CP has been widely studied for the pressure-driven membrane se-
paration processes. The stagnant film model (or the classical film
theory) provided a straight explanation of the concentration polariza-
tion phenomenon [9]. However, in the film theory, the assumption of a
uniform CP layer and invariant permeate flux along the filtration
channel is not accurate for the cross-flow membrane filtration, where
the CP layer develops gradually along the filtration channel. Also, the
constant flux assumption would lead to significant errors in the CP si-
mulation [10]. In later work, the solute transport equation involving
convection and diffusion was solved in a whole channel by numerical
methods such as the finite difference method [7,10] and the finite
element method [11]. However, these works employed simplified la-
minar velocity profiles in a channel with porous walls solved by Berman
[12]. Thus, the detailed interactions of momentum and mass transfer in
separation processes were not adequately simulated. The presence of
feed spacers (or so-called turbulence promoters) in a feed parallel-wall
channel apparently requires special attention. It has been reported in
the literature [13] that the spacers can significantly alter the hydro-
dynamic conditions and mass transfer patterns in a membrane filtration
channel. Commercial computational fluid dynamics (CFD) software has
been applied as a rigorous tool to describe the concentration polariza-
tion and the influence of the spacer configurations. The main advantage
of CFD software lies in its ability to represent the hydrodynamics and
the mass transfer properties in complex system geometries through the
use of the finite element or the finite volume numerical approaches
[14,15]. Presently, enormous improvements in the computational
methods facilitate the developing of more flexible and advanced nu-
merical algorithms that surpass commercial CFD software for solving
complex hydrodynamics and mass transfer problems. Ma and Song [16]
developed a 2-D streamline upwind Petrov/Galerkin finite element
model for numerically solving the coupled convection-diffusion equa-
tion and the Navier-Stokes equations in the feed channel to predict the
CP in the presence of feed spacers. The impact of the spacer filament
geometry on CP and permeate flux was further studied by Song and Ma
[17] based on the same model. J. Kromkamp et. al first developed a
numerical model using the lattice Boltzmann method to simulate the
hydrodynamics of a suspension flow and the CP in cross-flow micro-
filtration [18]. This study assumed that the suspended particles are fully
retained by the membrane by applying non-flux conditions on the
membrane. However, this study didn’t consider the spacer filaments in
the microfiltration process. In the present work, a new LBM CP

prediction model is developed with spacer filaments considered. Ef-
fective yet simple boundary conditions for the Navier–Stokes equations
and the convection-diffusion equation in a typical membrane filtration
channel are adopted, and some special treatments for solving the large
Peclet number problem in an ion convection-diffusion process are also
introduced in this paper.

Inorganic fouling growth is often a slow kinetic process, and the
development of scale mitigation strategies typically relies on thermo-
dynamic solubility calculations and experimental trial and error. Visual
inspection and microscopy are direct methods used to evaluate the
extent of inorganic fouling in certain operating conditions and to check
the effects of fouling mitigation strategies, though they require dis-
assembly of the test modules. Y. Cohen etc. developed a visual in-
spection method to study the gypsum scale formation in a plate-and-
frame RO module via the flux decline measurement and the membrane
surface imaging [19]. In a later study [20], Y. Cohen etc. extended this
crystal growth visual observation method to experimentally quantify
mineral scale nucleation and growth on RO membranes aiming to
compare the effects of antiscalants in retarding the mineral scale for-
mation. However, this direct observation method was severely con-
strained by the module dimensions, such as the membrane surface area,
membrane length, and channel height, thus it may not be effective as a
prediction tool for other desalination systems. Also, the development of
the hardware module, as well as the membrane destruction test feature
of this method may cause it to be uneconomical. Furthermore, the
fouling attachment is disturbed during the disassembly, thus the accu-
racy of this observation method could be reduced. Although a non-
destructive RO ex-situ scale observation detector (EXSOD), consisting of
a plate-and-frame RO cell with an optical window, an optical micro-
scope and a high-resolution digital camera, was developed for direct
visual real-time monitoring of mineral surface scaling on RO mem-
branes [21], a comprehensive understanding of the causes and con-
sequences of fouling formation is still evolving in experimental scaling
studies. These measurements and observations also do not provide any
dynamic results, such as the fluid dynamics and the concentration
distributions, instead yielding only the fouling attachment. Numerical
modeling should be an effective and economical method for the direct
simulation of fouling growth and the characterization of the local flow
and concentration fields. Radu and Picioreanu [22] developed a two-
dimensional mathematical model integrating fluid flow and solutes
mass transport for crystal nucleation and growth to study gypsum
(CaSO4·2H2O) scaling in spacer filled membrane feed channels. The
thickness of the outer layer of scaling during precipitate expansion is
tuned by fitting experimental data while the inner precipitate layer
does not grow. The study focused on the crystal mass accumulation on a
2-D cross-section (perpendicular to the channel plates) of the feed
channel, while the expansion form and growth of gypsum fouling on the
membrane surface (parallel to the channel plates) was not addressed.

Nomenclature

u fluid velocity vector, [m/s]
C solute concentration, [kg/m3] or [g/L]
vn volumetric permeate flux normal to membrane wall, [m/

s]
Cw concentration of solute at the membrane surface, [kg/m3]

or [g/L]
Cp concentrate of solute in the permeate flow, [kg/m3] or [g/

L]
Cb concentration of solute in the feed bulk flow, [kg/m3] or

[g/L]
Cs saturation concentration at a given temperature, [kg/m3]

or [g/L]
SI Supersaturation ratio, SI=C/Cs

ν kinematic viscosity (ν = μ /ρ), [m2/s]
μ absolute or dynamic viscosity, [(N·s/m2)] or [kg/(m·s)]
ρ density of solution, [kg/m3]
ρg gypsum crystal effective density, [kg/m3]
D diffusion coefficient (diffusivity), [m2/s]
km mass transfer coefficient, [m/s]
H height of feed channel, [m]
u0 centerline velocity of the fluid in a plain channel, [m/s]
Re Reynolds number, Re=u0H/ν
Sc Schmidt number, Sc= ν/D
M gypsum crystal mass, [kg]
Ac single crystal hemispherical surface area, [m2]
req equivalent radius of the single crystal coverage area, [m]
Rsc node coverage ratio by gypsum crystal
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M. Johns performed a 3-D simulation of biofilm growth in porous media
[23], which showed a promising applicability of the lattice Boltzmann
method in mass transport problems. However, the literatures involving
the modeling and prediction of the inorganic fouling growth on a
pressure-driven membrane surface to facilitate a direct fouling simu-
lation and visualization are still very limited. In the present work the
developed CP prediction model based on the lattice Boltzmann method
is successfully extended by coupling the gypsum growing kinetics with
the predicted hydrodynamic and mass transport fields to study the in-
organic fouling growth on the membrane surface. This novel numerical
model can be used to aid in the design of filtration conditions and the
dose selection/optimization of antiscalants for fouling mitigation, since
a direct fouling growth prediction could be a better indication of the
degree of membrane degradation.

2. The membrane filtration process modeling with the lattice
Boltzmann method

2.1. Development of LBM scheme

Two sets of particle distribution functions (PDFs) are employed to
simulate the convection-diffusion process of salt water in an in-
compressible flow. One PDF is for solving the flow dynamics and an-
other PDF is for solving the solute mass transport. The evolution of the
distribution functions is governed by the following lattice Boltzmann
equations containing collision and streaming [24,25]:
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where fi(x,t) and gi(x,t) are the distribution functions for the fluid and
concentration fields at position x and time t, respectively. The subscript
i indicates the lattice direction, δt is the time increment, τ and τs are the
non-dimensional relaxation times, ei denote lattice velocities and fieq

and gieq are the equilibrium distribution functions (EDFs). The kine-
matic viscosity ν of the fluid and the mass diffusivity D (diffusion
coefficient) are related to the dimensionless relaxation time by Eq. (2)
[24]
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The EDFs must be defined appropriately so that the mass and mo-
mentum are conserved [26]. The local equilibrium distribution func-
tions are defined by Eq. (3) [27] in order to recover the correct NS
equations and the convection-diffusion equation,
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where u is fluid velocity, ρ is fluid density, C is solute concentration,
and wi is the weight coefficients. Here cs=c/√3 is the lattice sound
speed, in which c = δx/δt = 1 for a standard square lattice, and δx = 1
is the lattice spacing. The weights are given by w0 = 4/9, wi= 1/9 for
i= 1–4, wi= 1/36 for i= 5~8. For the D2Q9 (2 dimensions and 9
velocity vectors) LBM, the discrete velocities ei are given by:
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The macroscopic properties, including the fluid density ρ, flow ve-
locity u, flow pressure P, and mass concentration C, are readily avail-
able from the PDFs as
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The Navier-Stokes equations (NSE) describing the macroscopic flow
and the convection-diffusion equation (CDE) describing the solute
transport can be recovered from the equilibrium distribution functions
shown in Eq. (3) via the Chapman-Enskog analysis with a second-order
accuracy [28,29]. The LBM is alternative numerical approach for sol-
ving the governing equations (NSE and CDE), and the simulation do-
main as well as the boundary are discretized into a mesh of nodes si-
milar to the finite element method or the finite difference method. The
distribution functions are solved for at each node by a collision process
and a streaming process, the then the distribution functions are used to
calculate the macroscopic parameters shown in in Eq. (5).

2.2. Model setup and boundary conditions

The geometry of the spacer filled feed channel in the pressure-
driven membrane filtration process and the applied boundary condi-
tions are illustrated in Fig. 1. Boundary conditions are fundamental in
LBM simulations, which usually determine the efficiency of the calcu-
lation and the accuracy of the result. Boundary schemes in LBM for the
fluid dynamics and the mass transport are applied separately for each
boundary. The distribution functions φi in Fig. 1 denote fi for the fluid
field or gi for the concentration field.

2.2.1. Simulation model setup
The height of the desalination channel shown is set to be 1 mm, the

diameter of the spacer filament is set to be 0.5 mm, the distance be-
tween adjacent spacer filaments is set to be 2.5 mm, and the distance
between the centers of the cylindrical filament to the nearest membrane
are set to be 0.3 mm. Actually the spacer filaments are not in touch with
the membrane but there is a 0.05 mm gap between them. This treat-
ment is reasonable since although the knots on the spacer should be
compressed by the membrane in the feed channel, there is still flow
around the main body of the filaments. Also, the spacer filaments are
not uniform cylinders but complex geometries [30]. So, in the present

Fig. 1. Fluid Dynamics and Mass Transport Boundary Conditions.
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study, the filaments are simplified as circles but are separated from the
membrane walls with 0.05 mm offset centers.

2.2.2. Boundary conditions for the Navier-Stokes equations
The known velocity boundary condition is applied on the bottom

and top membrane boundaries by a Zou-He boundary scheme [31] to
prescribe the permeate flux through the membranes. The tangential
velocity on the bottom and top boundaries is set as zero to meet the no-
slip condition. The vertical velocity normal to the bottom and top
boundaries is set equal to the permeate flux calculated by vw= Per·(ΔP-
Δπ), in which Per is the permeability constant of the RO membrane, ΔP
is the applied pressure, and Δπ is the osmotic pressure between the feed
side and the permeate side of the membranes. A simple bounce-back
scheme is used to achieve the no-slip boundary condition at the cir-
cumference of the spacer filaments. Bounce-back scheme refers to when
the fluid particles reach a boundary node, the particles scatter back to
the fluid along with their incoming directions. Following bounce-back
scheme, the unknown populations in post-streaming form on the
boundary can be calculated by

+ = +f t t f tx x( , ) ( , )i b i b¯ (6)

where fi+ are the known distribution functions in post-collision form.
The flow in the desalination channel (with or without spacers) is

driven by a pressure gradient (G=-∂p/∂x, in a unit of N/m3), which can
be achieved by adding a body force density term (still in a unit of N/m3)
in LBM following Z. Guo's method [32].

2.2.3. Boundary conditions for the convection-diffusion equation
In a pressure-driven membrane filtration process, the solute is as-

sumed to be totally blocked by the membrane. Although the total mass
flux is zero on the boundary in this process, there is flow (or permeate
flux) through the membrane boundary. A suitable treatment of such a
boundary is to admit the existence of the convection flux near the
boundary, and consider a back transport of the solute to the bulk flow,
which is called back-diffusion (where the total flux is still zero) [33].
Such a zero-flux treatment will reasonably induce a solute concentra-
tion gradient and an accumulation of the solute near the boundary layer
(concentration polarization). M. Yoshino [27] proposed a zero-flux
boundary scheme based on an assumption that the normal mass flux of
σ-species is zero on the boundary nodes, and then the desired unknown
wall concentration on the boundary, Cw, is specified by:
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M. Yoshino [27] proposed an approximation method for the un-
known distribution functions using the calculated wall concentration
Cw, as

= >g w C e nfor 0i i w i (8)

Thus, the calculated wall concentration Cw on the boundary from
Eq. (7) will be used to calculate the unknown distribution functions by
Eq. (8). Taking the straight boundary in Fig. 2 as an example, the un-
known wall concentration can be calculated by

=
+ +
+ +

C
g g g

w w ww
4 7 8

2 5 6 (9)

With the calculated Cw on the bottom membrane surface, the un-
known distribution functions g2, g5 and g6 can be obtained by Eq. (8).
Similar procedures can be applied to calculate the unknown distribu-
tion functions on the top membrane boundary.

Note that the bounce-back scheme for mass transport is another
boundary treatment only valid for the zero-flux boundary, which mi-
mics the no-slip boundary condition in solving NS equations [34]. The
zero-flux boundary condition should also be prescribed for the cylind-
rical spacer filaments in the desalination channel shown in Fig. 1.

However, the zero-flux boundary is ignored in this paper for improved
computational stability. This approach will result in only a small
amount of diffusion flux through these filament areas, since there is no
convection flux in these areas (the bounce-back or no-slip boundary is
applied for the fluid). The small diffusion flux in the filament areas can
be ignored when it is compared to the much larger convection flux in
the bulk flow [35].

2.2.4. Treatment for the large Peclet number convection-diffusion processes
In many mass transport cases, small particles such as ions in dilute

solution have very small diffusion coefficient. For example, the self-
diffusion coefficients of the five major ions in seawater at 25 °C are all
in the order of 1 × 10−9 (m2/s) [36]. Following the unit conversion
procedures in Appendix A, the solute relaxation time can be calculated
by,

= = +
= =

D c t D( 1/2) /3 3 1/2LBM s
c t

s LBM
2 1, 1

(10)

The calculated relaxation time is τs= 0.5008 when using a diffusion
coefficient D=DPHY= 1.5 × 10−9 m2/s, which is near the instability
value of 0.5 in lattice Boltzmann method. Sometimes, in a coupled si-
mulation of the Navier-Stokes equations and the convection-diffusion
equation, the correlated values between the fluid field relaxation time τ
and the concentration field relaxation time τs should be strictly con-
trolled to accurately represent the ratio of the convective mass trans-
port to the diffusive mass transport. Peclet number is defined as the
ratio of the rate of advection of a physical quantity by the flow to the
rate of diffusion of the same quantity driven by an appropriate gradient,
as

= = =Lu
D

Lu
D

Pe Re Sc (11)

In this case, ν is the kinematic viscosity. Take seawater for an ex-
ample, ν = 1 × 10−6 (m2/s), thus the calculated Sc≈ 667. For a
channel flow with Re= 100, the Peclet number is Pe≈ 66,700. For such
a large Peclet number problem, the diffusion is usually ignored in the
fluid flow direction. However, in other cases, such as membrane fil-
tration process and mass transport in porous media, although the mass
in the bulk flow is convection dominated, on the boundary layer, the
diffusion plays an important role since the permeate flow induced
convection is comparable with the mass gradient-induced diffusion.
Thus, the coupled simulation of such a complex convection-diffusion
process suffers computational stability problems with regular LBM
routines. J. Perko developed an effective lattice Boltzmann scheme for
advection-diffusion problems with large diffusion-coefficient hetero-
geneities and high-advection transport [37]. The basic idea is to divide
the physical diffusion coefficient into a reference value Dref, which is
constant over the entire domain, and a fluctuating or residue value D̂,
which represents a deviation from the reference (D=Dref+D̂). A diffu-
sion velocity ud is introduced by transferring the fluctuating diffusion

Fig. 2. Boundary Conditions at the Bottom Membrane Surface.
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part to an advection term, as

= + = + +C D D C D C CJ u u u( ˆ ) ( )ref ref d (12)

In Eq. (12),

= D C
C

u
ˆ

d (13)

For a large Peclet number problem with a very small physical dif-
fusion coefficient, the reference diffusion coefficient can be selected to
be a large value for better stability (Dref=50D in this paper), and in this
case the residue diffusion part should be negative.

2.2.5. The reaction boundary for fouling growth
The simulation of the crystal growth involves the reaction between

gypsum crystals and the surrounding solution. A first-order kinetic-re-
action model at the fluid-solid interface is adopted in this paper, as

=D C k C Cn/ ( )r s (14)

in which D is the diffusivity, C is the concentration at the interface, Cs is
the concentration at saturation, kr is the local reaction-rate constant,
and n is the direction normal to the interface. Q. Kang [38] proposed an
observation that at a stationary wall, the non-equilibrium portion of the
distribution function is proportional to the dot product of the function's
microscopic velocity and the concentration gradient. Thus, the solute
concentration at the boundary nodes as illustrated in Fig. 2 can be
calculated by

= + +C g C w( )/( )w s4 4 (15)

where β= kr/(8D). Note that the unknown distribution functions are
approximated differently in this reaction boundary scheme compared to
the approximation method in Eq. (8) in the zero-flux boundary scheme.
For example, the unknown distribution functions g2, g5 and g6 for a
bottom reaction boundary in Fig. 2 should be calculated by: g2 = (2/
9)Cw-g4; g5 = (1/18)Cw-g7; g6 = (1/18)Cw-g8. Detailed explanation of
this approximation method can be found in Ref. [38].

3. Results and discussion

3.1. Concentration polarization in a plain channel

A benchmark model is selected for the verification purpose. L. Song
et. al [17] developed a finite element model for the CP prediction in
spiral wound membrane modules, in which both the salt transport and
the hydrodynamics can be simultaneously solved either in a plain
channel or in a channel filled with spacer filaments. In this paper, the
parameters used in the CP prediction for the plain channel are set the
same as reference [17]. The LBM approach is used on a cross-section
domain (H×L=1 mm × 10 mm) for the plain channel with the pre-
scribed boundary conditions introduced in Section 2.2. The simulation
results for the CP and the permeate flux are shown in Fig. 3.

Three different simulation times are selected (2 s, 4 s, and 8 s), and
both the CP and the permeate flux converge to the FEM results. This
demonstrates that the settling time of the concentration polarization
layer is less than 2 s. The concentration profile in Fig. 3 shows that the
CP developed quickly at the initial section of the channel, and then the
development becomes slower gradually when approaching the channel
end. The simulation domain is selected to be a section of a feed channel
to capture the initial fast-developing feature of the concentration po-
larization, while a more gradual-developing CP can be expected for the
remainder of the feed channel.

The CP development with different Reynolds numbers can be seen
in Fig. 4. A reduced CP and an increased permeate flux can be observed
in Fig. 4 for a higher Reynolds number feed flow. This can be explained
by the observation that in a channel with higher Reynolds number flow,
the back-diffusion process tends to be promoted thus the solute accu-
mulation near the membrane surface (CP) is reduced.

The thicknesses of the CP boundary layers at the end of the plain
channel with flow in different Reynolds numbers can be seen in Fig. 5.
The boundary thicknesses for the different Reynolds numbers are very
close, which are all about 0.125 mm. But a detailed view in Fig. 5 shows
that a higher Reynolds number not only induces a lower CP value but
also causes a thinner CP layer thickness.

3.2. Concentration polarization in a spacer filled channel

The distribution of the salt concentration can be very complicated
when filaments exist. First, consider a comparison case with L. Song's
CP [17] prediction model for a channel with spacer filaments only at-
tached to the bottom membrane, in which the computational fluid
dynamics was achieved by the finite element method [17]. In the
comparison case, the channel height h= 1 mm, the channel length is
12 mm, the diameter of the spacer filaments is d= 0.5 mm, and the
spacing between the spacer filaments is lf= 4.5 mm (Fig. 6).

Comparison of the CP prediction results for this case utilizing the
current model and L. Song's [17] model can be seen in Fig. 7. For the
unattached side near the top membrane, the CP along the length of the
channel drops at the positions of the filaments, this is due to the higher
velocities near these positions. For the attached side near the bottom
membrane, the predicted CP value at the filament locations by the
current model is lower than the prediction by the FEM. This deviation

Fig. 3. Concentration Polarization (Cw/C0) and Permeate Flux Profiles in a
Plain Channel. Simulation Parameters: Δp= 800 psi; C0 = 32,000 mg/L;
D= 1.5 × 10−9 m2/s; Per= 7.3 × 10–12 m/(s·Pa); u0 = 0.1 m/s (Pressure
Gradient dp/dx= 800 Pa/m is Applied in the LBM); h= 1 mm.

Fig. 4. Concentration Polarization with Different Reynolds Numbers.
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may be explained by in the current model the filaments are actually not
in touch with the bottom membrane. This treatment is reasonable since
although the knots on the spacer should be compressed by the mem-
brane in the feed channel, there is still flow around the main body of the
filament. So, the main body of the filaments should be separated from
membrane walls [30].

For the attached side at locations between the two spacer filaments,
the current model predicts a higher CP than that by the L. Song's model
[17]. From the hydrodynamics shown in Fig. 8, there is no turbulence
near the bottom membrane between the two filaments, which indicates
a low velocity in this region. Thus, there is no reason for a largely re-
duced CP as observed in the FEM prediction near the bottom membrane
since there is no dramatic increase of the fluid velocity in this region.
So, the current CP prediction model provides more reasonable results.

The staggered configuration of the spacer filaments in a desalination
channel can be illustrated back to Fig. 1. The diameter of the spacer
filament is still set to be 0.5 mm, and the distance between adjacent
spacer filaments is set to be 2.5 mm. In this simulation, the distance
between the center of the cylindrical filament to the nearest membrane

is set to be 0.3 mm. Simulation results of the CP prediction in the spacer
filled channel with different Reynolds numbers can be seen in Fig. 9.
The Reynolds numbers in Fig. 9 are calculated by using the maximum
velocities in the channel.

The results show that the CP near the corner of the spacer filaments
is higher than that far from the spacer filaments. This is because the
fluid velocity around the corner of the spacer is lower than the velocity
far from the spacer element. However, the CP value far from the spacer
is lower than the plain channel CP value, which is caused by a higher
crossflow velocity in the spacer filled channel. The comparison between
a plain channel CP and a spacer channel CP with a same Reynolds
number (Re=29.6) shown in Fig. 9 indicates that the plain channel CP
is lower than the spacer channel CP at the spacer filament locations.
However, at the locations between the spacer filaments along the
channel length, the plain channel CP is higher than the spacer channel
CP. This can be explained by that the cross-flow velocity between the
two spacer filaments along the channel length is increased by the ex-
istence of a filaments attached to the membrane at the opposite side.
The CP curves shown in Fig. 9 also shows that the maximum CP on the
bottom membrane is almost the same as the top membrane for the same
Reynolds number, which indicates that the maximum CP in a spacer
filled channel is independent of the filament positions along the
channel length. A larger CP can be observed in Fig. 9 for a lower cross-
flow Reynolds number. The cross-flow velocity in the spacer filled
channel with different Reynolds numbers can be seen in Fig. 10.

Fig. 11 is a plot of concentration profile in the spacer filled channel.
The rejected solute by the membrane accumulates mainly behind the
spacer filaments. This observation conforms to the cross-velocity profile
shown in Fig. 10, in which the fluid velocity behind the spacer filaments

Fig. 5. Concentration Profile and CP Boundary Thickness.

Fig. 6. Geometric Parameters for the Comparison Case.

Fig. 7. CP Predictions at the Unattached Side and the Attached Side.

Fig. 8. Hydrodynamics in the Channel for the Comparison Case.

Fig. 9. Concentration Polarization of the Spacer Filled Channel.

Fig. 10. Cross-flow Velocity Profile in the Spacer Filled Channel.
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is lower than that in front of the filaments. A larger Reynolds number
reduces the concentration accumulation at this fouling potential area
behind the spacer filaments.

LBM differs from other numerical methods involving the computa-
tional fluid dynamics such as the finite difference method and the finite
element method in that the LBM aims at the distribution and interac-
tions of mesoscopic particles or molecules, thus making it more suitable
for representing complex physical phenomena, ranging from multi-
phase flows to chemical interactions between the fluid and the sur-
roundings. LBM has several advantages over the conventional CFD
methods. The nonlinear advection term in the macroscopic approach is
replaced by a linear streaming process in LBM. Also, there is no need to
solve the Poisson equation at each time step, as is required by the
macroscopic CFD approach, to satisfy the continuity equation. This
helps reduce the computational time.

3.3. The gypsum growth kinetics on the membrane surface

In order to develop effective scale mitigation strategies, there is a
need for a direct quantification of the scale formation on the RO
membrane surface. The feasibility of a direct and real-time observation
of the membrane surface scaling was recently reported [39], but a di-
rectly modeling of the membrane surface fouling is difficult for both the
traditional numerical methods and the advanced CFD method.

Q. Kang et. al. proposed a lattice Boltzmann model for crystal
growth in a supersaturated solution [38], but this model didn’t consider
the influence of the fluid flow on the growth of the crystal, and the
crystal growth scheme is also lattice grid dependent. In the present si-
mulation, a 2 × 2 mm2 membrane surface area is targeted. The top and
bottom edges of the simulation area are assumed to be symmetric
boundaries. Both hydrodynamic conditions and thermodynamic para-
meters are set to be the same as those in the CP prediction model, ex-
cept the pressure gradient G= -∂p/∂x in the feed channel, since the
cross-flow velocity near the membrane surface should be lower than the
bulk flow velocity. The pressure gradient is set to be 160 (Pa/m) thus
the cross-flow velocity near the membrane surface is 0.2 times the

channel centerline velocity umax.
Calcium sulfate dihydrate (gypsum) is selected as the mineral sca-

lant to demonstrate the proposed approach, given its common occur-
rence in the desalination of inland or ground brackish water, as well as
the tenacity of the formed gypsum scale [20,40]. While calcite scaling
can be controlled by pH adjustment, gypsum scaling remains one of the
major factors that limits the product water recovery [19]. The current
focus is on a direct simulation of the gypsum scale formation at a single
crystal level with respect to different solution supersaturation levels on
the membrane surface.

Two pathways for the crystallization have been identified [41]:
surface (heterogeneous) crystallization and bulk (homogeneous) crys-
tallization. Most of the research indicates that at low supersaturation
levels (supersaturation ratio SI< 3), the gypsum nucleation mechanism
was found to be heterogenous [42,43]. Thus, in this paper, only the
dominant surface crystallization mechanism in the pressure-driven
membrane filtration process by inorganic salts CaSO4 is considered.
According to Y. Cohen [39], the growth of a single gypsum crystal on
the membrane surface can be described by the standard diffusion
gypsum growth kinetics:

=dM
dt

k A C C( )m c s (16)

where M is the gypsum crystal mass, As is the single crystal surface area
in contact with the solution, C and Cs are the concentrations in solution
and at saturation, respectively, and km is the solution mass transfer
coefficient in crystal growth. Eq. (16) shows that the growth of the
gypsum crystal mass, at a given solution saturation with respect to the
gypsum (i.e., SIg), is directly proportional to the gypsum crystal surface
area. Also, the surface gypsum crystal actually grows into a rosette
structure, and this morphology was reported in [39] on RO membranes.
A hemispherical geometry is taken to represent the gypsum rosettes,
thus, from Eq. (16),

= = =
( )dM

dt
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dt
r
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3
2 2

(17)

where req is the equivalent radius of the single crystal coverage area, ρg
is the gypsum crystal effective density. Thus, the gypsum crystal growth
equation is given by,

=
dr
dt

k C C( )eq m

g
s

(18)

D. Hasson [44] proposed that the radial growth of the gypsum
crystals is described by the widely adopted kinetic expression:

=dr
dt

k C C( )g w s
n

(19)

Fig. 11. Concentration Profile in the Spacer Filled Channel.

Fig. 12. Growth of the Fouling Geometry and the Fouling Mass.
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where Cw is the solute mass concentration at the membrane surface, k is
the crystallization rate coefficient and n is the order of the kinetic
equation. The value of n is either 1 or 2 [2,44]. When the crystallization
process is diffusion controlled, n= 1 and k= km (mass transfer coeffi-
cient in crystal growth). When the crystallization process is controlled
by a surface reaction, n= 2 and k= kr (surface integration rate coef-
ficient). It should be noted that S. Lee et. al and Y. Cohen et. al [20,45]
stated that CaSO4 crystallization in the crossflow membrane system
follows a first-order equation (n= 1). Thus, the current crystal growth
equation should be the same as D. Hasson's kinetic expression. The
following section will discuss how to implement the crystal growth in
the LBM scheme based on the current gypsum crystal growth equation.

3.4. Implementation of crystal growth model in LBM

A new node number independent crystal growth implementation
scheme is developed in the LBM for the direct evaluation and quanti-
fication of crystal growth radius and mass. If a constant mass transfer
coefficient km is supposed, then the rate of surface crystallization is
directly proportional to the membrane wall concentration of CaSO4

salts [45], and the crystal radius growth becomes

=r k C C t( )eq
m

w s (20)

The saturation concentration Cs of calcium sulfate at a given tem-
perature can be estimated using the expression [46]:

= + × °C T T(1846 9 ) 10 , 15 30 Cs
3 (21)

A solution temperature of T= 25 °C is used in the saturation con-
centration calculation. The membrane surface concentration is given by
Cw=SI×Cs, in which SI is the supersaturation ratio and Cs is the sa-
turation concentration at a given temperature (with a unit of kg/m3 or
g/L). Since the crystal growth in LBM may not necessarily be a circle, an
equivalent radius req is used to transform the arbitrary shape into a
circle form, as seen in Fig. 12.

A node coverage ratio by gypsum crystal Rsc is defined to record the
radius growth of the crystal.

=
> <
=

R :
1, fullycovered
0 and 1, partially covered, growing
0, notcovered

sc

(22)

The value of Rsc for the partially covered node (or boundary nodes,
shown as the light green area in Fig. 12) will increase in each time step
by Δreq. The boundary nodes may not necessarily be at the boundary;
they actually include all the partially covered and still growing nodes. A
fully covered node, although at the boundary, will not contribute to the
radius growth, but mass increase is still occurring (In Fig. 12, a darker
color indicates a larger fouling mass). Once a partially covered node
becomes a fully covered node, one of the nearest liquid nodes becomes
a solid particle, which is also and a new partially covered node, fol-
lowing Q. Kang's crystal node expansion scheme [38]. At each time
step, the grown portion of the fouling mass Δmeq is distributed equally
to all solid fouling nodes including the fully covered interior nodes and
the partially covered boundary nodes. The developed node number
independent LBM implementation scheme is capable of predicting the
crystal morphology and quantifying the crystal growth radius and mass.

3.5. Crystal growth simulation results and experimental comparison

The initial plate-like gypsum crystals grow radially outward from
the growth centers, forming rosette structures that block the permea-
tion areas of the membrane. To validate the proposed gypsum crystal
growth model and the LBM implementation, results the experimental
study by Y. Cohen [47] about the influence of bicarbonate on mem-
brane gypsum scaling are used for comparison. In Y. Cohen's study,

bicarbonate concentration was varied (HCO3
- ≤ 7.81 mM) for a fixed

initial gypsum saturation index (at the membrane surface) of 2.0. The
time evolutions of the crystal rosettes clearly demonstrate that there
was a remarkable retardation of the gypsum scale growth with the in-
crease of the bicarbonate concentration. The experimental data of the
crystal rosettes radius under different bicarbonate concentration is used
to compare with simulation results from the developed inorganic
fouling growth model. In the experimental study [47], a linear growth
of the crystal rosettes with time was observed, thus, the experimental
data is linearly fitted to obtain the mass transfer coefficient in Eq. (20)
based on the proposed method in [39]. The calculated mass transfer
coefficient is 2.949 × 10−5 (m/s), which is located in the range of
1.4 × 10−5−8.1 × 10−5 (m/s) estimated under operating conditions
in [20,47] using a mass transfer coefficient estimation method in [48].
The size of a nucleus originated by the primary nucleation is usually
less than 10−8 m [49], so in this paper, the initial equivalent radius of
the nucleus is set as 1 × 10−8 m. The initial mass of the nucleus is
estimated using a gypsum crystal density of 2310 kg/m3.

In the first study, the gypsum crystal growth is performed in the
absence of the bicarbonate and with a CaSO4 supersaturation ratio of 2.
The gypsum crystal growth and mass distribution on the membrane
surface can be seen in Fig. 13. Simulation results conform to the rosette
structure hypothesis and readily provide the crystal size and mass in-
formation. The dashed cross lines in Fig. 13 show the initial nucleation
positions, which clearly indicate that the crystal is more prone to grow
in the countercurrent direction of the feed flow (flow direction is from
left to right). This conforms to the experimental observations [39]
shown in Fig. 14, in which the axially asymmetric growth of a gypsum
crystal is more prone in the direction opposite to that of the feed flow.
This phenomenon could be explained by the local fluid and con-
centration simulation results, shown in Figs. 15 and 16, that the salt
concentration decreases from the crystal frontal flow-stagnation edge to
the rear of the crystal, and higher concentration induces faster growth
in the direction opposite to the feed flow.

Fig. 15 also shows that the formed crystal scaling on the membrane
surface acts as a solid obstacle that affects the local cross-flow velocity
due to the applied no-slip boundary around the crystal.

Fig. 16 shows that the inorganic salt concentration layer around the
crystal scaling is lower than the concentration in the bulk flow. This
may because that the gypsum crystallization process gradually con-
sumes the salt ions around the crystal. Also, the salt concentration de-
creases from the crystal frontal flow-stagnation edge to the rear of the
crystal, which induces the asymmetric structure of the gypsum crystal

Fig. 13. Crystal Growth and Mass Accumulation on the Membrane Surface.
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rosette. The reduced calcium sulfate concentration downstream of the
crystal growth center results from the mixing eddies caused by abrupt
obstacle of the growing non-permeation crystal.

In Y. Cohen's test results, a linear growth of crystal rosettes with
time was observed with a nearly constant rate that decreased with
rising bicarbonate concentration [47]. Bicarbonate adsorption was as-
sumed as a plausible explanation for the observed gypsum scale re-
tardation following the Langmuir isotherm. For the growth of gypsum
crystal rosettes on RO membranes, the relevant Langmuir adsorption
isotherm for a monolayer of bicarbonate adsorbed onto the gypsum
crystal surface can be represented by

=
+
K

K
[HCO ]

1 [HCO ]
A

T

A
T

3 lm

3 lm (23)

where Θ is the fraction of crystal surface area occupied by the bi-
carbonate adsorbed layer, [HCO ]T

3 lm is the local bicarbonate con-
centration at the membrane surface (mM), and KA is the adsorption
equilibrium constant (mM−1). From Eq. (16), the growth of the gypsum
crystal mass is directly proportional to the gypsum crystal surface area
at a given solution supersaturation. Therefore, one can derive the rate
of the crystal rosette radius growth by

= =
dr
dt

k C C
dr
dt

(1 ) ( ) (1 )eq m

g
s

eq

(24)

in which (1-Θ) is the fraction of the gypsum surface area free of bi-
carbonate.

Fig. 17 shows the comparison of the simulation results and the test
data in terms of the gypsum crystal equivalent radius with time under
different bicarbonate concentrations. The mass transfer coefficient in
the crystal growth model Eq. (16) for all bicarbonate cases is set the
same (2.949 ×10−5 m/s) as the case without the bicarbonate
(HCO3

- < 0.01 mM). The adsorption equilibrium constant KA is set to be
0.25 ± 0.05 mM−1 for all bicarbonate cases [47]. Simulation results
by the LBM agree well with test data, which indicates a stronger
gypsum scaling retardation with increased dosage of the bicarbonate.
Also, the LBM simulation based on the Langmuir adsorption isotherm
supports the hypothesis that the bicarbonate adsorption onto the
gypsum crystals is a plausible mechanism for the retardation of the
surface gypsum crystal development.

The mass accumulations of the gypsum scale with time under dif-
ferent supersaturation conditions are plotted in Fig. 18. Simulation
results agree well with the analytical results for the crystal mass ac-
cumulation, in which the analytical results are based on the hemisphere
hypnosis of the crystal structure following Eq. (17).

The crystal growth results in terms of the equilibrium radius and the
mass accumulation at different locations in the spacer filled filtration
channel are obtained analytically and numerically, as shown in Fig. 19
for a simulation time of 4 h. The CP prediction result (Re=97.6) for the
top membrane is used as the supersaturation ratio by assuming that the
ions in the feed flow are fully saturated for simplicity. The analytical
result is obtained by using Eq. (20) and the CP prediction data. In the
crystal growth simulation, the membrane surface concentration is given
by Cw=CP×Cs, in which the original supersaturation ratio SI is

Fig. 14. Illustration of the Asymmetric Growth for the Gypsum Crystal (SI
=1.43) [39].

Fig. 15. Cross-flow Velocity around the Crystal Rosette.

Fig. 16. Solution Concentration around the Crystal Rosette.

Fig. 17. Comparison of the Equivalent Radius in LBM with Test Data.
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replaced with the predicted CP along the channel length, and Cs is the
saturation concentration at a given temperature following Eq. (21).
Basically, the crystal grows larger with more accumulated mass at the
corner areas in front of and behind the spacer filaments along the
channel length direction. The locations of the spacer filaments along the
channel length direction (in x-axis) are also shown in Fig. 19.

For other saturation levels of the feed source water with respect to
different ions without the fully saturation assumption, the CP prediction
result can still be used to calculate the corresponding supersaturation ratio
at different channel locations, since CP is a relative number between the
concentration near the membrane with that in the feed flow. Numerical
simulation results of the crystal growth on the membrane at the different
channel locations match well with the analytical results.

4. Conclusions

Concentration polarization is an inherent phenomenon in the pres-
sure-driven membrane filtration process, which is affected by complex
local hydrodynamic and thermodynamic conditions. Prediction of the
solute CP is crucial for designing membrane separation modules, opti-
mizing filtration system performance, and especially for understanding
the membrane fouling phenomena. CP initiates and exacerbates mem-
brane surface fouling. When the mineral salt concentration exceeds the
saturation, mineral scaling will be formed on the membrane surface.

The currently available experimental methods for fouling observation
are constrained by the module dimensions, the destructive test feature,
the limited observable quantities, etc. A numerical prediction of the
membrane fouling provides an alternative approach for a direct eva-
luation of the fouling growth, the local fluid dynamics and the con-
centration distribution for a wide range of operating conditions.

A lattice Boltzmann model is developed to study the CP phenom-
enon and the inorganic fouling growth in the pressure-driven mem-
brane filtration process. In the CP simulation, the LBM allows a si-
multaneous solution of the Navier–Stokes equations and the
convection-diffusion equation in a pressure-driven membrane filtration
channel. The CP prediction in a plain channel is verified by comparison
with published numerical data. Thereafter, the CP simulation in a
spacer filled channel indicates a higher fouling potential near the
spacer-membrane contact corners just in front of and behind the spacer
filaments due to higher CP values in these areas. A LBM scheme for the
gypsum crystal fouling growth is developed by extending the CP pre-
diction model, which enables a direct simulation of the inorganic
fouling growth at a single crystal level with respect to given solution
supersaturation near the membrane surface. Both cross-flow velocity
and solute concentration are lower around the formed crystal than
those in the bulk flow. The predicted gypsum crystal equivalent radius
and accumulated mass agree well with published experimental data and
analytical results. Simulation result of the gypsum scale retardation by
the bicarbonate indicates a stronger gypsum scaling retardation with
increased dosage of the bicarbonate and supports the hypothesis that
the bicarbonate adsorption onto the gypsum crystals is a plausible
mechanism for the retardation of the surface gypsum crystal develop-
ment.

The present numerical model for the membrane surface fouling
growth also enables a direct evaluation of the impacts of antiscalants on
the surface fouling development. It also serves as a design tool to aid in
identifying suitable operating conditions for membrane filtration pro-
cesses, or in the dose selection of antiscalants to mitigate inorganic
fouling. Antiscalants are surface active materials that interfere with
precipitation reactions primarily in ways such as keeping super-
saturated solutions of sparingly soluble salts, distorting crystal shapes
to get non-adherent scale, or separating crystals from solutions by ad-
sorption. The present LB model only considers the supersaturation al-
tering effect and the surface adsorption effect by the antiscalants, and
can be used to provide initial and elementary instructions for dose se-
lection of these mentioned types antiscalants. However, several para-
meters are required as inputs for the present simulation model, such as
the diffusion coefficient of salts, the supersaturation ratio of solution
after the antiscalant effect, the mass transfer coefficient of foulants, and
the adsorption equilibrium constant of antiscalants, to predict the CP
and fouling formation with antiscalants added. The current model is
limited by the availability of the required input parameters for some
commercial antiscalants, and by not considering the inherent interac-
tions between different antiscalants, or other chemical effects. A more
comprehensive model will better instruct desalination antiscalant dose
selection, and the current numerical study should be viewed as a sig-
nificant step in that development.

Future studies may involve the simulation of the crystal nucleation,
which is the basis of the crystal growth study for multiple crystals as
well as the membrane surface coverage by these crystals. Modeling of
permeate flux decline with time and predicting the effects of fouling
mitigation strategies based on the present model can also be pro-
spective topics.
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Fig. 18. Mass Accumulation of a Single Crystal.

Fig. 19. Equivalent Radius and Accumulated Mass Along the Channel Length.
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Appendix A. Conversion between physical units and LBM units

In the lattice Boltzmann method, time steps and lattice spacing are usually selected as a unit 1, thus it is convenient to use dimensionless values of
all the parameters. Also, some special dimensionless numbers are frequently used to characterize solutions of the Navier-Stokes equations and the
convection-diffusion equation. Generally, flows with the same Reynolds number (Re=uL/ν) are equivalent, and solutions with the same Schmidt
number (Sc= ν/D) are equivalent. For each physical quantity, Q, one can write:

= ×Q Q C¯ Q (A1)

in which

Q: physical value, include unit, [Q];
Q̅: dimensionless value, [Q̅] = 1;
CQ: conversion factor, include unit, [CQ]= [Q].

The dimensionless numbers should generally be invariant in the conversion of physical units and LBM units. Flows with the same Re and Sc are
equivalent, thus

= CRe Re 1Re (A2)

The following procedures can provide a guide of the conversion between physical units and LBM units in the desalination application (in the
following, a parameter symbol with a overhead bar denotes a dimensionless parameter).

(1) General input parameters

Channel height: H= 1 × 10−3 [m];
Viscosity of water: ν = 1.00 × 10−6 [m2/s];
Density of water: ρ= 1 × 103 [kg/m3];

(2) LBM resolution, node number in height direction HLBM= 100;

Conversion factor of length: CH=H/HLBM, [m];

(3) LBM density is generally selected to be: ρLBM= 1;

Conversion factor of density: Cρ= ρ/ρLBM, [kg/m3];

(4) Relaxation time: τ = 1;
For convenience, we choose the lattice spacing and the time step as: = = = =x t c x t1; 1 / 1.
The dimensionless viscosity can be calculated as = c t¯ ( 1/2) /32 , and the physical unit of kinematic viscosity ν is m2/s, thus

= = = =C C
C x t

C x
t

C
¯ ( 1/2) /3
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T
T

H
2

2

2 2

(A3)

(5) Conversion factor of velocity: CU=CH/CT;
(6) Conversion factor of force per volume: CF=CρCH/CT2;
(7) LBM velocity:

=U U C¯ / U (A4)

Numerical restrictions: LBM velocity should be small (in the order of 0.1) for valid LBM simulations.
(8) Schmidt number: Sc = ν/D
(9) Diffusion coefficient: =D̄ ¯

Sc (Re and Sc are invariant in unit conversion);
(10) Relaxation time for solute:

= = +D c t D t
x

¯ ( 1/2) /3 3 ¯ 1
2s s

2
2 (A5)

Usually, relaxation times τ and τs shall both be at least 0.55 for better stability. Usually, LBM Mach number is larger than in reality due to smaller
sound speed in LBM otherwise the simulations would be too expensive. Lattice Boltzmann simulates incompressible flow under the condition of low
Mach number condition (Ma=u/cs < 0.3, where is u is the macroscopic flow velocity and cs is the speed of sound) with a weak variation in density.
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