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a b s t r a c t

This paper presents a novel approach for modeling and analyzing a geared rotor-bearing
system including nonlinear forces in the gear set and the supporting fluid film journal
bearings. The rotordynamics system model has five degrees of freedom that define the
transverse displacements of the shaft-gear centerlines and the relative displacement of the
gear tooth contact point. The journal bearing nonlinear forces are obtained via a solution of
Reynolds equation for lubricant film pressure utilizing the finite element method. Co-
existing, steady-state, autonomous and non-autonomous responses are obtained in an
accurate and computationally efficient manner utilizing the multiple shooting and
continuation algorithms. This yields the full manifolds of the multiple bifurcation system.
Chaos is identified with maximum Lyapunov exponents, frequency spectra, Poincar�e
attractors, etc. The results reveal a dependence of the gear set contact conditions and
system nonlinear response characteristics, i.e. jump, co-existing responses, subharmonic
resonances and chaos on the choice of journal bearing parameters. The results also show
that Hopf bifurcations, which occur along with oil whirl in a journal bearing system, can be
attenuated by increasing the gear torque.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Gearing system speeds and operating torques continue to increase in high-performance machinery. This amplifies the
effects of nonlinearities in the gears including tooth backlash and time-varying mesh stiffness. Backlash describes the
intentional clearance provided between mating teeth to prevent binding and to include a thin lubricant film between the
teeth for heat removal and reduced wear. Backlash causes intermittent loss of contact between the teeth creating a nonlinear
force and torque. The mesh stiffness varies periodically with time due to the variation of the number of tooth pairs in contact,
and the variation of the point of contact along with the tooth profiles. The time-varying stiffness of the meshing teeth may
lead to parametric resonances, which are principal sources of internal excitations and vibrations in gear transmission systems.
The backlash forces and time-varying stiffness interact yielding a complex nonlinear, parametrically excited systemwith both
torsional and lateral vibration. Accurate and computationally efficient gear dynamic models, including nonlinear forces and
parametric excitations, are required for the effective design of gear sets and the machinery in which they form a critical
component.
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Significant prior research has been performed on the nonlinear dynamic response of geared systems. Kahraman and Singh
[1] analyzed the effect of backlash on a single-degree-of-freedom gear model employing both analytical and numerical
simulations. They validated their model by comparisonwith experimental results and found that the nonlinear characteristics
caused chaotic and subsynchronous resonance responses. Kahraman and Singh [2] examined interactions between gear
backlash nonlinearity and the bearing clearances and identified chaotic and subharmonic responses. Kahraman and Singh [3]
included time-varying stiffness and clearance nonlinearity in their numerical model of geared systems and identified strong
coupling effects between these characteristics. Blankenship and Kahraman [4] presented an experimental e analytical cor-
relation study of a geared system including backlash nonlinearity and parametric excitation. Their predictions of co-existing
solutions with the harmonic balance method were confirmed experimentally. Kahraman and Blankenship [5] observed
subharmonic resonances in a geared system experiment, which were demonstrated to be strongly dependent on damping
ratio and stiffness variation of the gearmesh. Kahraman and Blankenship [6] experimentally observed chaotic vibration, jump
phenomena, and subharmonic response due to parametric and backlash excitations. Ranghothama and Narayanan [7]
employed an incremental harmonic balance method, arc-length continuation, Floquet theory, and Lyapunov exponents to
examine the bifurcation characteristics of a three-degree-of-freedom geared rotor-bearing model. Theodossiades and Nat-
siavas [8] introduced a new analytical method for a gear systemwith time-varying stiffness and backlash using perturbations
techniques. Al-shyyab and Kahraman [9,10] investigated the nonlinear response of a multi-mesh gear system using a multi-
term harmonic balance method. The effects of gear parameters on the nonlinear behavior were studied for both period-one
and sub-harmonic motions. Liu et al. [11] analyzed the effect of gear mesh damping and backlash amplitude on the states of
gear meshing and nonlinear behaviors of a gear pair. Yang et al. [12,13] predicted the nonlinear vibration of a gear system
subjected to multi-frequency excitations utilizing a multiple time scales method. They confirmed the interaction between
different harmonic excitations and the complex nonlinear behaviors caused by the multi-frequency excitations. Yang et al.
[14] performed parametric studies to investigate the influence of the contact ratio, spacing error, transmitted load and mesh
damping of a gear using a fifth-order Runge-Kutta method. Wang et al. [15] analyzed the effect of modulation internal
excitation on the gear system and verified the accuracy of the prediction by comparing its results with the experimental
measurements.

Nonlinear vibration in different types of gears has been investigated. Motahar et al. [16] performed a numerical, nonlinear
dynamics study of a bevel gear system. Tip and root modifications were introduced to study their influence on gear vibration.
Yang and Lim [17] developed a hypoid gear model considering time varying mesh stiffness, backlash nonlinearity and time-
varying bearing stiffness. They showed that the backlash nonlinearity could suppress parametric instability induced by the
time-varying bearing stiffness, under certain operating conditions.Wang and Lim [18] studied the effect of gearmesh stiffness
asymmetry for the drive and coast sides of the hypoid gear system, and confirmed that the mesh stiffness at the drive side has
more significant effect on the nonlinear dynamics. Ambarisha and Parker [19] investigated nonlinear dynamics of a planetary
gear system. They applied the profile of the time-varying mesh stiffness obtained from a finite element analysis to improve
accuracy. Zhao and Ji [20] performed numerical simulations of a wind turbine gearbox having two planetary gear trains.
Complex nonlinear responses of the gearbox were shown to result from a time-varying mesh stiffness, backlash nonlinearity
and static transmission error. Xinghui et al. [21] analyzed parametric resonance of a planetary gear subjected to speed
fluctuations. The gear model considers time-varying mesh stiffness, and the instability boundaries for the fundamental and
combinations resonances were derived based on a perturbation analysis.

Some researchers have explored approaches to suppress vibrations induced by gear nonlinearities. Cheon's [22] simu-
lation study investigated the effect of a one-way clutch to reduce the dynamic transmission error of a geared system. Cheon
[23] employed a phasing approach to reduce time-varying mesh stiffness and the resulting vibration, especially at the
fundamental resonance.

Stochastic methods have been applied to study the effects of uncertainty in gear parameters. Bonori and Pellicano [24]
utilized a stochastic model to analyze the effect of manufacturing error on nonlinear gear dynamics and showed that this
could induce chaotic vibrations in the gear system. Wei et al. [25] included modeling uncertainties of a gear system, such as
mesh stiffness and damping, and determined the resulting response levels using an interval harmonic balance method.

Various analytical and modeling methods have been applied to gear dynamics simulation. Kim et al. [26] investigated the
effect of smoothing functions on clearance nonlinearity of an oscillator and showed how the adjustment of a regulating factor
associated with the smoothing functions yielded more reliable predictions. Farshidianfar and Saghafi [27] applied a Melnikov
type analysis to investigate homoclinic bifurcations and chaotic responses in a geared system. Gou et al. [28] employed a cell
mapping theory to analyze the multi-parameter coupling characteristics of gear parameters. Li et al. [29] used an incremental
harmonic balance method to analyze gear systems with internal and external periodic excitations.

Hydrodynamic journal bearings are widely employed in geared systems with high speed and load requirements due to
their relatively high stiffness and damping. Theodossiades and Natsiavas [30] investigated the effect of gear and journal
bearing parameters on bifurcation, chaos and oil whirl. They represented the journal bearing force with a finite-length
impedance method. Baguet and Jacquenot [31] developed a finite element shaft model to study the interactions between
a helical gear and a finite-length bearing and showed that a linearized bearing coefficient model does not provide accurate
predictions of gear vibrations, especially at high speed and load conditions. Farg�ere and Velex [32] investigated the effects of
the bearing oil inlet location and thermal response on the gear system dynamics. These effects change the journal static
equilibrium position, which in turn alters the dynamic response of the system. Liu et al. [33] studied the interactions between
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tooth wedging effect and journal bearing clearance using the approximate short journal bearing theory. Simulation results
showed that varying the operating speed or applied torque may cause the occurrence of oil whirl response of the rotordy-
namic systems. The effect of tooth wedging on the vibration level of the geared-rotor system is also presented.

Kim and Palazzolo [34,35] employed shooting with deflation to study the nonlinear response of a Jeffcott rotor supported
by floating ring bearings. The effects of changing parameters such as bearing length-to-diameter (L=D) ratio and including the
thermal effect of the lubricant were presented. Kim and Palazzolo [36] studied the bifurcation of a heavily loaded rotor with
five-pad tilting pad bearings. A shooting/arc-length continuation approach was utilized to obtain quasi-periodic and chaotic
motions, the latter being confirmed by maximum Lyapunov exponents.

Prior models for coupled gearset-bearing vibration generally utilized lower fidelity or steady-state bearing models, and
presented results in less rigorous nonlinear dynamics formats. This may have been motivated by the high computational
expense of employing higher fidelity bearingmodels and presenting results in advanced nonlinear dynamics formats. Bearing
forces were typically represented with linear spring and damping constants, or were obtained using short bearing theory,
with highly simplified oil film cavitationmodels. The simplified approaches may lead to significant prediction error especially
for steady-state responses with orbits that are relatively large (>15%) with respect to the bearing clearance. The present
approach provides a highly accurate, finite element-based solution of the finite-length, Reynold's equation accounting for
cavitation at each time step in the numerical integration. Additionally, results are presented in advanced nonlinear dynamics
formats including bifurcation diagrams, maximum Lyapunov exponent plots, and Poincar�e attractor plots. Computation time
is held within practical limits utilizing multiple shooting and continuation algorithms, and with the use of embedded Cþþ
components in the MATLAB code, and parallel processing.

The highlight and original contribution of the work is to provide a computationally efficient, high fidelity and rigorously
presented modeling approach for the dynamics of the five-degree-of-freedom dual shaft-gear pair system supported on fluid
film bearings. This approach involves finite-length bearing models, advanced multiple shooting and continuation methods,
gear flexibility and transmission error effects, bifurcation and Poincar�e attractor diagrams, and maximum Lyapunov expo-
nents for identifying chaotic behavior. Finally, this approach is applied to parametric studies with varying journal bearing and
gear mesh stiffness parameters.
2. Modeling of a geared rotor system supported by fluid film journal bearings

2.1. Five-degree-of-freedom gear-bearing-rotor model

Fig. 1 shows a centered gear pair attached to parallel rotors that are each supported by fluid film journal bearings. The
model is composed of two rigid rotors having mass elements mi, radii Ri and polar moments of inertia Ji. The subscript i
denotes the driving (i ¼ 1) and driven (i ¼ 2) geared rotors.

An external torque T1 is applied to the driving gear. A nonlinear mesh coupling consisting of tooth backlash and time-
varying stiffness is modeled to transmit torque between driving and driven gears. The motion coordinates for the model
include (q1, q2, x1, x2, y1, y2) as shown in Fig. 2.

The dynamic transmission error (DTE), dðtÞ is given by

dðtÞ¼R1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞ (1)

where erðtÞ represents the static transmission error. The analytical description of the time-varying mesh stiffness and the
static transmission error can be expressed in the form of Fourier series as [3]
Fig. 1. Gear set supported by hydrodynamic journal bearings.



Fig. 2. Spur gear pair model including hydrodynamic journal bearings.
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kmðtÞ ¼ k0 þ
X∞

i¼1

sik0 cos
�
iugt � 4i

�

erðtÞ ¼ e0 þ
X∞

j¼1

pje0 cos
�
jugt � jj

� (2)

where k0 is a mean mesh stiffness, e0 is a mean static transmission error, and si and pj are the amplitude of the Fourier series
components. The phase angles of the Fourier series are represented by 4i and jj, respectively.

The term ug is the gear mesh frequency represented by

ug ¼Niui (3)

where Ni is the number of gear teeth, ui is rotor operating frequency and i ¼ 1;2. For this study u1 ¼ u2 ¼ u is used, which
follows the convention in the related literature [33]. The pressure angle a is assumed to remain constant during operation.
Plain journal bearings support both rigid shafts, and their nonlinear fluid film force models are explained in section 2.2.

As noted in Ref. [26], a tooth backlash model defined with a piecewise linear function in the governing nonlinear dif-
ferential equations may result in convergence difficulties when employing a Newton-Raphson method. Therefore, the
following smoothening function presented in the same reference is also used in the present study.

rðtÞ¼1
2
fðdðtÞ� bÞ½1þ tanhðsðdðtÞ � bÞÞ�g þ 1

2
fðdðtÞþ bÞ½1þ tanhð� sðdðtÞþ bÞÞ�g (4)

where rðtÞ represents relative gear mesh displacement considering backlash, b is the half-length of the tooth backlash

amplitude (b ¼ b0
2 ) and s is a modulating factor which affects the accuracy of the backlash representation and convergence

[26]. The value s ¼ 100 is selected for this study.
The coupling force between the driving and driven gear mesh is given by

Fm0 ¼ kmðtÞdðtÞþ cm _dðtÞ (5)

where cm represents mesh damping, and it is assumed to be constant in this study. dðtÞ represents the dynamic transmission

error in Eq. (1), and _dðtÞ is its derivative.
The equations of motion for the six-degree-of-freedom gear-bearing rotor system are

J1€q1 þ kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞR1 þ cm _dðtÞR1 ¼ T1
J2€q2 � kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞR2 � cm _dðtÞR2 ¼ �T2
m1 €x1 þ kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞsinðaÞ þ cm _dðtÞsinðaÞ ¼ Fb1x
m1 €y1 þ kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞcosðaÞ þ cm _dðtÞcosðaÞ ¼ Fb1y �m1g

m2 €x2 � kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞsinðaÞ � cm _dðtÞsinðaÞ ¼ Fb2x
m2 €y2 � kmðtÞðR1q1 � R2q2 þ x1 sinðaÞ � x2 sinðaÞ þ y1 cosðaÞ � y2 cosðaÞ � erðtÞÞcosðaÞ � cm _dðtÞcosðaÞ ¼ Fb2y �m2g

(6)

_
By replacing the term kmðtÞðR1q1 �R2q2 þx1 sinðaÞ�x2 sinðaÞþy1 cosðaÞ�y2 cosðaÞ�erÞ þ cmdðtÞ with Fm0, the equations
become
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J1€q1 þ R1Fm0 ¼ T1
J2€q2 � R2Fm0 ¼ �T2
m1 €x1 þ Fm0 sinðaÞ ¼ Fb1x
m1 €y1 þ Fm0 cosðaÞ ¼ Fb1y �m1g
m2 €x2 � Fm0 sinðaÞ ¼ Fb2x
m2 €y2 � Fm0 cosðaÞ ¼ Fb2y �m2g

(7)

where F and F represents the ith bearing forces in the x and y directions, andm g andm g terms represent gravity forces.
bix biy 1 2

By multiplying each of equations with R1 and R2, the first two become

J1R1€q1 þ R1
2Fm0 ¼ R1T1

J2R1€q2 � R2
2Fm0 ¼ �R1T2

(8)
Divide the two equation with J1 and J2 respectively, and then subtracting the second equation from the first one, to obtain

R1€q1 �R1€q2 þ
 
R1

2

J1
þR2

2

J2

!
Fm0 ¼ R1

J1
T1 þ

R2
J2
T2 (9)

Substituting p ¼ R1q1 � R2q2 and manipulating the equation yields

€pþ
 
J2R1

2 þ J1R2
2

J1J2

!
Fm0 ¼ R1

J1
T1 þ

R2
J2
T2 (10)

Dividing through by

 
J2R1

2þJ1R2
2

J1J2

!
yields

 
J1J2

J2R1
2 þ J1R2

2

!
€pþ Fm0 ¼

 
J1J2

J2R1
2 þ J1R2

2

!�
R1
J1
T1 þ

R2
J2
T2

�
(11)

Substitute Je for

 
J1J2

J2R1
2þJ1R2

2

!
to obtain

Je €pþ Fm0 ¼ Te (12)

where Te ¼ Je

�
R1
J1
T1 þR2

J2
T2

�
is an equivalent input torque term.

The term dðtÞ was inserted into Eq. (4) to include the backlash nonlinearity effect. Then, from Eqs. (4) and (5), the gear
meshing force including the backlash nonlinearity effect becomes

Fm ¼ kmrðtÞ þ cm _dðtÞ (13)
Finally, the equations including the backlash nonlinearity, time-varying mesh stiffness and the static transmission error
become

Je €pþ Fm ¼ Te
m1 €x1 þ Fm sinðaÞ ¼ Fb1x
m1 €y1 þ Fm cosðaÞ ¼ Fb1y �m1g
m2 €x2 � Fm sinðaÞ ¼ Fb2x
m2 €y2 � Fm cosðaÞ ¼ Fb2y �m2g

(14)

where Je is the equivalent inertia of two gears, i.e.

 
J1J2

J2R1
2þJ1R2

2

!
. The torsional natural frequency un of the system is defined as

ffiffiffiffi
k0
Je

q
.

For validation purposes, the simulation result are compared with experimental measurements [4] in Fig. 3. The experi-
ment was conducted using relatively stiff ball bearings so the x and y journal motions are assumed fixed in the simulation. The
gear parameters for backlash, Fourier coefficients of time varying mesh stiffness and amplitude of static transmission error



Fig. 3. Comparison of dynamic transmission error with experimental measurements in Ref. [4] (Ref. [37]).

Table 1
Comparison of calculated natural frequencies with [15].

Calculated natural frequencies in Ref. [15] Natural frequencies based on current model

1st mode 0 Hz 0 Hz
2nd mode 1149 Hz 1149.3 Hz
3rd mode 1293 Hz 1293.6 Hz
4th mode 1604 Hz 1604.3 Hz
5th mode 1799 Hz 1799.1 Hz
6th mode 5043 Hz 5043.7 Hz
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from Ref. [4] are employed in the simulation. The root mean square (RMS) value of the dynamic transmission error is plotted
with respect to operating speed, showing good agreement between prediction and test results.

Table 1 provides a second validation case through comparison of the five-degree-of-freedom gear-bearing dynamic
model's predicted natural frequencies with those provided in Ref. [15]. Since natural frequencies are characteristics of a linear
model, the backlash and time varying stiffness were omitted and the bearing forces were represented by the stiffness and
damping provided in the reference. The correlation is shown in the table and confirms excellent agreement.
2.2. Finite element model of plain journal bearing

The Reynolds equation [34] for an incompressible lubricant combines the fluid continuity andmomentum equations into a
partial differential equation for film pressure, and is given by

v

vq

 
h3

12m
vp
vq

!
þ v

vz

 
h3

12m
vp
vz

!
¼RJuJ

2
vh
vq

þ vh
vt

(15)

whereuJ is the rotating speed of the journal, and RJ and m represent the radius of the journal and the viscosity of the lubricant,
respectively. The centers of the bearing and the journal are OB and OJ in Fig. 4, respectively.

The displacements of the journal center relative to the bearing center in the x and y directions are xJ and yJ , respectively,

and p is the pressure in the lubricant film. Expressions for fluid film thickness h and its derivative vhðqÞ
vt at q are given by

hðqÞ¼CB � xJ cos q� yJ sin q

vhðqÞ
vt

¼ � _xJ cos q� _yJ sin q
(16)

where CB represents the bearing radial clearance.
The mathematical model assumes rigid shafts and rigid attachments between the bearings and ground. Therefore, the

journal motions xJ and yJ are identical to their respective gear centerline motions. Thus x1, y1 are identical to xJ1 and yJ1 , and
x2, y2 are identical to xJ2 and yJ2.

The finite element mesh of a fluid film is illustrated in Fig. 5. The coordinate q corresponds to the circumferential direction
of the film and the direction of rotation is from the left (qB) to the right (qE). The axial coordinate is representedwith z and only



Fig. 5. Mesh and boundary conditions for finite element journal bearing film model.

Fig. 4. Axial mid-plane section of a journal bearing.
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a half-length (L2) of the film is modeled due to its symmetry. The pressure on the bottom (z ¼ 0) side of the mesh are set to
ambient pressure Pambient. Continuous pressure and flow condition are imposed on the left and right sides of the mesh. The
zero-flow condition at the symmetric side (z ¼ L

2) and the continuous pressure and pressure gradient conditions at left/right
sides are applied as follows

vz¼L=2 ¼0; Pq¼p ¼ Pq¼�p;
vp

vqq¼p
¼ vp

vqq¼�p
(17)
The Reynolds equation is solvedwith amesh of triangular simplex finite elements, which interpolate the two-dimensional
pressure distribution in the film domain. The instantaneous reaction force on a journal is obtained by integrating the pressure
distribution. Considering that symmetry condition the journal reaction force becomes

Fbi ¼
�
Fbix
Fbiy

�
¼ 2

ZL=2
0

Zp
�p

p
�
cos q
sin q

�
dqdz (18)
3. Nonlinear steady-state solution methods

3.1. Multiple shooting method

The shooting method (SM) is a numerical procedure that utilizes an iterative algorithm and numerical integration of the
nonlinear differential equations to locate co-existing, periodic equilibrium states. The SM provides a guided iterative search to
locate the state vectors that repeat after a specified, or unknown in the case of autonomous systems, period. The single
shooting method (SSM) is widely used in nonlinear dynamics research because of its simplicity. However, SSM may expe-
rience convergence problems, especially at saddle-node points. Multiple shooting methods (MSM) improves the numerical
stability of the SSM by dividing time intervals into smaller ones. Compared to SSM, the MSM shows more robust convergence
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to periodic states and is less sensitive to the selection of initial state guesses. In addition, MSM is more suitable for parallel
computing, thus making it desirable for systems with a large number of degrees of freedom.

The MSM algorithm is explained in this section. The non-autonomous nonlinear equations of motion can be represented
by the first order form as

d
dt

x¼x0 ¼ hðx; t; pÞðn�1Þ (19)
where x is a state vector, t is an explicit time variable in the forcing term and p represents the physical parameters of a system.
The period of the steady-state harmonic response defined by a user is represented by the minimum period PF and a rational
number R in the non-autonomous case

PR ¼RPF (20)
The solution at the end of the period PR is represented

xTR ¼ xðt¼ PR; xð0Þ¼x0Þ (21)

where x0 is the initial condition state vector. If x0 is a solution on an orbital equilibrium state of the period PR, it will result that

xTR
¼xðt¼ PR; xð0Þ¼ x0Þ ¼ x0

x0 ¼gþ e
(22)

where g is a user-defined guess of initial conditions, and e is an error term.
Unlike SSM which requires the single end-point constraint (xTR ¼ x0) as explained above, MSM divides PR into smaller

intervals and generates multiple constraints as follows:

xP1 ¼ xðt ¼ P1; xð0Þ ¼ x0Þ ¼ x1
xP2 ¼ xðt ¼ P2; xð0Þ ¼ x1Þ ¼ x2
«
xPm�1

¼ xðt ¼ Pm�1; xð0Þ ¼ xm�2Þ ¼ xm�1
xPm ¼ xðt ¼ Pm; xð0Þ ¼ xm�1Þ ¼ xm ¼ x0

(23)

where divided time intervals are 0 ¼ P0 < P1 </< Pm ¼ PR. Note that m is the number of time intervals defined by a user. A
multi-dimensional Newton-Raphson method is applied to update x0.

For an autonomous system, the additional phase condition should be defined since the point of the periodic solution at a
specific time is not unique. In this study, a phase condition that sets the DTE from Eq. (1) as zero is used [42].

Hðx0; PAÞ¼gðx0; PAÞ � x0 ¼ 0
cðx0Þ ¼ 0

(24)

where PA is a period of an autonomous system orbit to be identified along with an initial condition x0.

3.2. Arc-length continuation

The shooting method may take considerable computation time, especially when plotting co-existing solution loci versus
system parameters. “Continuation algorithms” have been developed to generate the loci (branch plots) with significantly
increased efficiency relative to conducting independent SM searches for each parameter value. The Arc-length Continuation
(AC) method [42] is applied in this research. AC provides robust solution searches even in high curvature regions by utilizing
the trajectory of the solution curves along an arc-length as shown in Fig. 6.

An additional unknown u is involved in the iteration search. The next solution is

8<
:

~g
iþ1
n

uiþ1
n

9=
;¼

8<
:

~g
i
n

ui
n

9=
;þ

2
6664

~J
i
g Jiu

vkiT
n

vx
vki

n
vu

3
7775
8<
:

�f
	
~g
i
n;u

i
n



�q
	
~g
i
n;u

i
n; s


9=
; (25)

where u and s are operating parameters and arc-length of the solution curve, respectively, n is a current step number, Ju is
Jacobian matrix with regard to u, and k is the constraint imposed on the solution procedures as



Fig. 6. Pseudo Arc-length Continuation method.
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kðx;u; sÞ¼ n
���~ginþ1 � ~gn

���
2

2 þ
	
ui
nþ1 � un


2 � ðDsÞ2 (26)

where n is a relaxation factor, and Ds is an arc-length.
Then Newton-Raphson iteration is performed until the convergence criteria are satisfied. A continuation of periodic so-

lution searches is carried out to plot a frequency response in the excitation frequency range of interest, including bifurcation
points. The phase condition in Eq. (24) is added to Eq. (25) for the autonomous system continuation algorithm.

3.3. Stability identification based on the shooting method

The Jacobian matrix of the shooting method is calculated to determine the local stability of periodic solutions. More
specifically, the eigenvalues of the Jacobian matrix at a steady-state solution identifies the solution's stability and its bifur-
cation type. Perturbed solutions are computed to generate the Jacobian matrix entries. The system is considered unstable if
the maximum magnitude of the eigenvalues is larger than unity.

3.4. Lyapunov exponents for identifying chaos

Various approaches are used to identify the presence of chaos in the response of a nonlinear dynamical system. The most
widely used approach is to calculate Maximum Lyapunov exponent (MLE, mmax). Lyapunov exponents indicate the rate of
separation of two infinitesimally close trajectories in the local phase space [42]. A total of n initial separation vectors with
different directions are used for a systemwith n states, to obtain a spectrum of n Lyapunov exponents (LE, miði¼ 1;2;:::;nÞ) for
calculating the rates of separation. The simultaneous numerical integrations of nonlinear differential equations and linearized
form of them are required for the MLE calculation.

Nonlinear differential equations : _x¼gðxÞ (27)

Linearized form of Eq: ð27Þ : _b¼ LðbÞ (28)
The actual and linearized trajectories with perturbed initial conditions are calculated from Eq. (27) and Eq. (28),
respectively, at various times along the nonlinear system trajectory. Deviation distances are obtained from the difference
between the nonlinear trajectory and linearized trajectories.

DðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx21 þ dx21 þ/þ dx2n

q
(29)
An appropriate time interval tf is selected for the numerical integrations to avoid a numerical error. Sets of ortho-
normalized perturbed vectors are obtained from a Gram-Schmidt procedure as
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After conducting the integrations of Eqs. (28)e(30) for r times, the Lyapunov exponents are obtained as

mi ¼
1
rtf

Xr
k¼1

ln
	
Dk
i ðtkÞ



(31)

where Dk
i ðtkÞ is the denominator of the orthonormal vector bk

i , k denotes the kth time step and i represents ith vector element.
The MLE is used as a quantitative measure to determine the chaotic response of a nonlinear dynamical system as follows.

� mmax >0 : System is chaotic ðnecessary but not a sufficient condition for chaosÞ
� mmax <0 : System attracts to a fixed point or a stable periodic orbit ðasymptotically stableÞ
� mmax ¼ 0 : The orbit is quasi� periodic

(32)
4. Numerical example

The five-degree-of-freedom geared rotor-bearing model of Fig. 2 and Eq. (14) is utilized to demonstrate various nonlinear
phenomena induced by gear and journal bearing nonlinearities. The multiple shooting/continuation method and Lyapunov
exponents discussed in section 3 are utilized along with direct numerical integration. MATLAB ODE15s was used with a
relative tolerance of 10�9 for computing the Jacobian matrix in the shooting/continuation procedure. Embedded Cþþ coding
and parallel processing are utilized in theMATLAB program to accelerate the execution. The results are divided into 3 sections
(1) parametric resonances/jump phenomena and the effect of journal bearing parameter variations on those phenomena, and
(2) chaotic responses due to gear nonlinearity and the effect of journal bearing parameters on the responses, and (3) the effect
of gear mesh stiffness on the hydrodynamic stability of the gear system supported by journal bearings. Solid and dashed lines
indicate stable and unstable responses, respectively in all figures. Table 2 summarizes the parameters of the spur gear pair and
journal bearings used in this study.

4.1. Parametric resonances and jump phenomenon

This section presents results for parametric instability, including fundamental and subharmonic resonances induced by
time varying mesh stiffness. Both the fundamental and subharmonic resonances are parametric resonances since they are
removed when the time varying component of the gear mesh stiffness is removed. Parametric resonance and jump phe-
nomena of a spur gear system with backlash nonlinearity and time-varying mesh stiffness were treated in Refs. [1e8] and
more recently in Refs. [9e15]. However, the effects of journal bearing parameters on the nonlinear response of the geared
system needs further investigation. Parametric instability of the fundamental and double-period subharmonic frequencies is
presented below including journal bearing effects. Applied torque input is considered as an excitation source, and time-
Table 2
Parameters of the spur gear pair and journal bearings.

Gear parameters
Mass m1 ¼ m2 ¼ 9:3276 kg
Moment of inertia J1 ¼ J2 ¼ 0:03187

kg$m2

Radius of gears R1 ¼ R2 ¼ 0:0982 m
Pressure angle a ¼ 20�

Backlash amplitude b0 ¼ 100 mm
Mean mesh (tooth) stiffness k0 ¼ 1e8 N=m
Mesh damping ratio zm ¼ 0:01e0:025
Number of gear teeth N1 ¼ N2 ¼ 28
Applied torque (T1) 100e3000 N m

Journal bearing parameters
Bearing diameter DB ¼ 0:092

m
Bearing clearance CB ¼ 74e184 mm
Bearing L=D ratio 0:3e2
Lubricant viscosity m ¼ 10e90 mPa s



Fig. 7. Effect of backlash (a) peak-peak displacement of DTE (b) time response at 2000 rpm.
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varying mesh stiffness with the frequency corresponding to gear mesh frequency ug in Eq. (3) is included. No imbalance
excitation and static transmission error erðtÞ in Eq. (2) are applied in this section. The non-autonomous, multiple shooting/
continuation methods in section 3 are applied to the system equations to analyze the influence of journal bearing parameters
on nonlinear responses. Only the first Fourier coefficient of the time-varying mesh stiffness s1 in Eq. (2) was included, and it
was set equal to 0.2, since values from 0.1 to 0.3 are employed in the literatures [1e15]. The bearing L=D ratio is 1, the radial
clearance is 105 mm, the lubricant viscosity is 30mPa s, and an applied torque of 1250 Nm is used for the nominal values of the
simulation. Each parameter is varied to investigate its effect on the softening effect due to gear nonlinearities.

Direct numerical integrationswith initial conditions determined from the shooting/continuation procedure are performed
to obtain peak-to-peak displacement amplitude vs. rotor operating speed plots. At the same time, the stability of the periodic
solutions is presented and obtained from the shooting method's Jacobian matrix eigenvalues.

4.1.1. Fundamental resonance
Fig. 7 shows the response amplitude regarding operating speed for the non-dimensional peak-to-peak displacements of

DTE ( db0) where d is defined from Eq. (1). The applied torque is 1100 N m in this case. The linear system resonance will occur

when the gear mesh frequency ug ¼ Nu ¼ un ¼
ffiffiffiffi
k0
Je

q
. This occurs at around 2500 rpm in this case.

Including backlash causes a softening effect related left-leaning backbone curve with an unstable branch occurring be-
tween 1800 and 2300 rpm in Fig. 7(a). Multiple co-existing solutions are seen to occur when the rotor speed is in the vicinity
Fig. 8. Effect of (a) applied torque and (b) bearing L=D ratio on the peak-peak displacement of DTE through the fundamental resonance (solid line: stable, dotted
line: unstable).
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of un
N where N represents the number of gear teeth. The presence of co-existing solutions is clearly seen to result from

including backlash, and the peak DTE severity is seen to nearly double when backlash is included. Note that the time-varying
stiffness effect is included in both the with and without backlash cases. The increased DTE caused by the gear nonlinearity is
also confirmed by the time response of both cases at 2000 rpm in Fig. 7(b).

The results in Fig. 8 are obtained for three different applied torques T1, i.e., 1,000, 1250 and 1500 N m (T2 ¼ 0), where T1 is
for driving gear and T2 is for driven gear. All three cases exhibit a fundamental parametric resonance caused by the time-
varying mesh stiffness, with a softening effect starting from near 2300 rpm. The amplitudes of the forced steady-state
harmonic response increase with increased torque inputs. In all cases of Fig. 8(a), the unstable responses emerge through
saddle-node bifurcations around 2300 rpm. Three or five multiple, co-existing steady-state responses occur between 1700
and 2300 rpm depending on the applied torque values. The critical rpm (2300 rpm) for jump-up behavior is nearly inde-
pendent of applied torque variation, but in contrast, the critical rpm for jump-down behavior is more sensitive to applied
torque variation. The critical rpm of jump-down behavior tends to increase with increasing drive torque. The separation
between the jump-up and jump-down rpm is reduced with increasing applied torque. The emergence of the right-leaning
portion of the response curves, which observed at the highest applied torque 1500 N m may be explained in terms of the
backlash forces. Three different meshing states can exist depending on the maximum DTE; no impact, single-sided impact,
and double-sided impact. In Fig. 8(a), the system shows only a single-sided contact with the 1000 N m applied torque, which
is the source of the primary softening effect. Increasing the applied input torque gives rise to a hardening effect, which in-
troduces additional co-existing responses and jump-up/down frequencies. The peak-peak response at 1500 Nm shows a clear
hardening effect along with the softening effect. The number of multiple co-existing responses increased from three to five
with the applied torque increased from 1000 to 1500 N m. The figure also shows a tendency of the response curve to move
rightwards towards the zero backlash response as the DTE increases. This is consistent with a greater engagement of teeth as
the amplitude increases. These results are consistent with the experimental and numerical results in Ref. [4], which used a
single-degree-of-freedom gear model considering only torsional motion. Prior research utilized a simple rigid or linear
stiffness and damping bearingmodel, or analytical short bearing theory, or finite-length impedancemethod, which precluded
the accurate investigation of nonlinear bearing parameter effects on the response. In this study, utilizing the finite element
method for the nonlinear fluid film force of the finite-length bearing, the bearing L=D ratio is varied from 0.3 to 2 in Fig. 8(b).
The peak-peak DTE displacements in the frequency range away from the resonance region are not significantly affected by the
bearing L=D ratio variation. However, similar to the applied torque input case, the jump-down frequency is influenced by the
L=D ratio variation, since the jump-down event occurs at a relatively lower frequency range with higher L=D ratio. The jump
down speed is lowered by about 100 rpm for L=D ¼ 2 compared with L=D ¼ 0.3. Fig. 9 presents the bifurcation diagrams
corresponding to the input torques 1000 and 1500 N m in Fig. 8(a), in a manner that highlights the jump phenomena and
multiple co-existing solutions.

Fig. 10 illustrates the effect of varying bearing lubricant viscosity on steady-state, nonlinear harmonic response. Lubricant
viscosities of 10 and 90 mPa s, in addition to the nominal value of 30 mPa s, are simulated for two L=D ratio (L=D ¼ 0.3 and 1).
Increasing the viscosity decreases the jump-down frequencies and increases the peak resonant amplitude in both L=D cases.

Fig. 11 shows the frequency-amplitude diagramwith radial bearing clearances of CB ¼ 184 mm and CB ¼ 74 mm, along with
nominal CB ¼ 105 mm. The results with the smallest clearance, i.e., CB ¼ 74 mm, show a broader range of co-existing solutions
region compared to other values in both the L=D ¼ 0.3 and the L=D ¼ 1 cases. The CB ¼ 74 mm and L=D ¼ 1 case displays a
double-sided impact and resulting in hardening effect in Fig. 11(b). The L=D ¼ 1 case shows more reduction in jump-down
Fig. 9. Bifurcation diagrams of (a) 1000 N m torque and (b) 1500 N m torque cases in Fig. 8(a).



Fig. 10. Effect of lubricant viscosity on the peak-peak response of DTE (a) Bearing L=D ¼ 0.3 and (b) Bearing L=D ¼ 1 (solid line: stable, dotted line: unstable).

Fig. 11. Effect of bearing clearance on the peak-peak response of DTE (a) Bearing L=D ¼ 0.3 and (b) Bearing L=D ¼ 1 (solid line: stable, dotted line: unstable).

Fig. 12. Multiple co-existing responses using the shooting method (L=D ¼ 1, m ¼ 90 mPa s, T1 ¼ 1500 N m). (a) Frequency-amplitude diagram (b) Phase portrait at
1850 rpm (Solid line: stable, dotted line: unstable).
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Fig. 13. Co-existing mesh deformation rðtÞ responses: (a) Response 1 (b) Response 4 (c) Response 5.
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frequency as compared to the L=D¼ 0.3 case. This reductionmay be attributed to the fact that the L=D¼ 1 geometry has more
fluid film area than for L=D ¼ 0.3, and hence greater force to affect the parametric resonance.

Fig. 12 shows five co-existing steady-state responses in the frequency and phase plane domain for CB ¼ 74 mm case in
Fig. 11 (b). For the phase portrait, the rotor spin speed equals 1850 rpm, and it is obtained via the non-autonomous MSM
developed in section 3. The excitations include the time-varyingmesh stiffness and the applied torque. Periodic responses 1, 3
and 5 are stable and 2 and 4 are unstable as predicted by the eigenvalues of the Jacobian matrix of the MSM. Note that the
unstable forced harmonic responses cannot be obtained by direct numerical integration, but only with a directed search
approach such as the MSM.

The mesh deformation rðtÞ in Eq. (4) corresponding to the multiples responses in Fig. 12 are shown in Fig. 13. The mesh
deformation in Fig.13(a) has static and dynamic components and never loses contact. The response in Fig.13(b) has zeromesh
deformation for most of the period and demonstrates the effect of single-sided contact induced by the backlash nonlinearity.
Fig. 13(c) shows double-sided contact cycling between positive, zero and negative mesh deformation states. The result of this
contact behavior is a net hardening effect as evidenced by the right-leaning secondary bend in the response 5 curve of Fig. 12.

Fig. 14 illustrates the repelling/attracting motions among stable and unstable forced harmonic response orbits at
1850 rpm. The unstable Response 2 is repelled towards the stable attractors, i.e. Response 1 (Fig. 14(a)) or Response 3
(Fig. 14(b)). Thus, the unstable manifold (the dotted line) initiated by a saddle-node bifurcation in Fig. 12 acts as a border
manifold, which provides information about the convergence route in phase space.

4.1.2. Subharmonic resonances
Prior work [3,38,39] revealed that subharmonic resonance of geared systems is highly dependent on the amplitude of

time-varying mesh stiffness, mesh damping ratio and static applied torque. The focus here is to demonstrate the effect of

journal bearing parameters on the subharmonic vibrations occurring for a rotor speed in the vicinity of 2un
N . The maximum
Fig. 14. Repelling motion of the unstable orbit (response 2) at fundamental resonance region (a) Response 2 / Response 1 (b) Response 2 / Response 3 (solid
line: stable, dotted line: unstable).



Fig. 15. Effect of (a) applied torque and (b) bearing L=D ratio on the peak-peak response of DTE of subharmonic resonance (solid line: stable, dotted line:
unstable).

Fig. 16. Waterfall diagrams (a) 750 N m Torque, run-up, (b) 750 N m Torque, run-down, (c) L=D ¼ 0.6, run-up, (d) L=D ¼ 0.6, run-down.
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rpm is extended from 3100 rpm for the fundamental resonance case to 5500 rpm to observe the subharmonic resonances.
Fig. 15(a) shows that increasing torque increases the peak-peak DTE amplitude, the backlash nonlinearity generally causes a
softening (left-leaning resonance) effect, but a double-sided contact is evidenced by the right-leaning, hardening peak at
750 N m torque, similar with the fundamental resonance in Fig. 8.



Fig. 17. Effect of (a) lubricant viscosity and (b) bearing clearance on the peak-peak response of DTE for subharmonic resonance (solid line: stable, dotted line:
unstable).
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Fig.16 provides waterfall diagrams corresponding to the 750 Nm torque case in Fig.15(a) and the bearing L=D¼ 0.6 case in
Fig. 15(b). Fig. 16(a) and (b) correspond to run-up and run-down in speed for the 750 N m torque case with L=D ¼ 1. Fig. 16(c)
and (d) correspond to run-up and run-down in speed for the bearing L=D ¼ 0.6 case with 625 N m torque input. The figures
show jump-up and jump-down bifurcations near 2500 rpm, and the presence of a sub-harmonic resonance and a 0.5x gear
mesh frequency response.

In Fig. 15, unstable branches appear as a period-doubling bifurcation emerges near 5000 rpm, which corresponds to twice

the fundamental resonance frequency rotor speed (2un
N ). A saddle-node bifurcation occurs as the period-doubled unstable

branches reach their peak amplitude, yielding a stable branch. As a result, one stable solution with the gear mesh frequency
(ug) and two unstable/stable solutions with half gear mesh frequency (0:5ug) coexist in the operating speed range between
3000 and 5000 rpm.

Variation of the journal bearing parameters significantly affects the subharmonic resonance as shown in Figs. 15(b) and 17.
The sub-harmonic resonance is seen to vanish when considering a drop in L=D from 0.8 to 0.6. Physically this may result from
the more significant force of the larger L=D bearing inducing the subharmonic vibrations. Fig. 17(a) shows that increasing the
lubricant viscosity extends the frequency overlap range by decreasing the jump-down frequency. Similar trends are also
observed in the case of bearing clearance in Fig. 17(b). The subharmonic is seen to disappear for the low viscosity (10 mPa s)
case and the low clearance (105 mm) case. Fig. 18 shows multiple co-existing DTE versus time plots for the 30 mPa s case in
Fig. 17(a): 3575 rpm, L=D ¼ 1, an applied torque of 625 N m, a lubricant viscosity of 30 mPa s and a bearing clearance of
36.8 mm. The tun in Fig. 18 is the non-dimensional time variable where the time t is multiplied by the torsional natural
frequency un. Note that the Response 1 in Fig.18 (a) has the frequency equal toug , while the Response 2 and 3 in Fig.18(b) and
(c) have the half frequency of ug .
Fig. 18. Time response of multiple co-existing response of DTE (a) Response 1, (b) Response 2, (c) Response 3.
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4.2. Chaotic response

The effect of linearized bearing model stiffness and damping coefficients, static transmission error, tooth friction, etc. on
the chaotic response of geared systems was investigated in Refs. [2,6,7,24,40,41], and chaotic behavior was observed
experimentally in Ref. [6]. The effects of varying journal bearing parameters using a nonlinear bearing model, on the geared
system's chaotic response are discussed below. The model parameter values include a low torque load of 200 N m, a light
mesh damping ratio of 0.01, L=D ¼ 0.3, and the mean static transmission error e0 is set to b0, the coefficient of static
transmission error pj in Eq. (2) is set to 0:15. Unbalance force is not included in this simulation. The nonlinear equations are

solved using MATLAB's ODE 15s with a relative tolerance of 10�5. The time response corresponding to the first 1500 gear
mesh periods of the system was discarded from the sampled data to ensure that the responses reached steady-state con-
ditions. The steady-state responses during the last 500 gear mesh periods were employed for the plots shown below. The
MLEs of the spur gear system were plotted to identify the onset of chaotic motion. The MLEs converged after 600-time in-
tervals with 0.25 gear mesh periods per interval.

Fig. 19 shows DTE bifurcation diagrams versus rotor rpm while varying torque, bearing lubricant viscosity and radial
clearance. The viscosity and clearance are held fixed at 40 mPa s and 105 mm, respectively, while varying torque in Fig. 19(a).
The torque and clearance are held fixed at 1100 N m and 105 mm respectively while varying viscosity in Fig. 19(b). The torque
Fig. 19. Bifurcation diagrams vs. operating speed for varying parameter values (a) applied torque (100, 1000 and 2000 N m) (b) lubricant viscosity (10, 40 and
70 mPa s), and (c) Bearing clearance (74, 105 and 184 mm).
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and viscosity are held fixed at 1100 N m and 40 mPa s respectively while varying radial clearance in Fig. 19(c). The Poincar�e
dots are sampled at the gear mesh frequency period (Dt ¼ 2p

ug
).

With a relatively low applied torque (100 Nm), the system performs 1� synchronous motions at the gear mesh frequency
until the operating speed reaches about 1800 rpm. Then chaotic responses emerge and are maintained at higher speeds. Note
that with increasing applied torque from 1000 to 2000 N m, the operating speeds where jump occurs are slightly increased
from 2050 to 2150 rpm, which implies that the variation of applied torque has an impact on the natural frequencies of the
geared system supported by journal bearings, via a torsional-lateral coupling. Comparison of three cases reveals that the
increasing torques tend to mitigate the chaotic responses.

Fig. 19(b) shows that the chaos in DTE response starts at lower speed and ranges over a larger set of values as the bearing
lubricant viscosity increase from 10 to 70 mPa s. In all three diagrams of Fig. 19(b), with higher operating speeds over
2500 rpm, the chaotic responses turn into period four and two motions, and eventually into period one motion. Fig. 19(c)
shows how the chaotic behavior in DTE occurs with the radial bearing clearance values from 74 to 184 mm. Period-doubling
bifurcations occur with decreasing speeds from 4500 rpm to lower speeds in the 74 and 105 mm cases, as exemplified by the
period one motion turning into period two motion around 3800 rpm, followed by additional period doubling into chaos. In
Fig. 19(b) and (c), the lower viscosity and high bearing radial clearance tend to suppress the chaotic behaviors and show
relatively stable motions.

Fig. 20 is included to more clearly illustrate the occurrence of chaotic and period-doubling bifurcations corresponding to
the 40 mPa s case in Fig. 19(b). Attractors are presented for the four different operating speeds (2300 rpm, 2900 rpm,
3500 rpm and 4100 rpm). The strange attractor and corresponding positive MLE value of 0.056 both confirm chaotic behavior
at 2300 rpm. The number of attractors (4 / 2/1) confirms the occurrence of period-doubling bifurcations as the speed
decreases from 4100 to 3500 to 2900 rpm.

Fig. 21 shows DTE bifurcation and MLE diagrams versus applied torque, journal bearing radial clearance and viscosity, at
the fixed operating speed 1540 rpm. The viscosity is held fixed at 30 mPa s, and the clearance is held fixed at 100 mmwhile
varying torque in Fig. 21(a). The Fourier coefficient of the static transmission error in Eq. (2) is set to 0:15 and applied to the
system. The sampling frequency of Poincar�e dots is the gear mesh frequency ug.
Fig. 20. Bifurcation diagrams and Poincar�e attractors at different speeds, for a lubricant viscosity 40 mPa s case in Fig. 19(b).



Fig. 21. Bifurcation and MLE diagrams vs. (a) applied torque (0e2400 N m), (b) bearing clearance (60e185 mm) and (c) lubricant viscosity (5e90 mPa s).
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The MLEs quantitatively confirm the existence of chaotic behavior. Fig. 21(a) presents the bifurcation diagram and MLE
plot with applied torque ranging from 0 to 2400 N m. Increasing the applied torque is seen to eliminate chaotic motion, and
synchronous 1�motion appears at applied torques above 400 Nm. TheMLEs show positive values, indicating chaos, with low
applied torque (<400 N m). For instance, at 200 N m, the corresponding MLE has the positive value of þ0.07.

The radial bearing clearance is varied from 60 to 185 mm in Fig. 21(b) with the rotor speed at 1540 rpm and the lubricant
viscosity of 30mPa s. Chaotic motion occurs in three separate clearance ranges (i.e., 60e70 mm, 95e105 mm,175e185 mm), and
period-doubling routes to chaos with decreasing and increasing parameter values are observed in the ranges 60e80 mm and
130e180 mm, respectively. In Fig. 21(c), the applied torque is held fixed at 100 N m, and the clearance is held fixed at 100 mm
Fig. 22. Frequency spectra, phase portraits and Poincar�e attractors of dynamic transmission error (DTE) for different bearing clearances (a) 80 mm (b) 74 mm (c)
61 mm in Fig. 21(b).
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while varying viscosity. The figure shows chaos appearing in two ranges of lubricant viscosity: over the ranges of 0e7 mPa s
and 55e85 mPa s. All bifurcation diagrams in Fig. 21 display the period-doubling route to chaos, which indicates that the
system goes into chaotic states by doubling its period with increasing or decreasing control parameters.

The periodic, period-doubling and chaotic DTE behaviors implied in Fig. 21(b) for bearing clearance variation, are further
confirmed in the frequency spectrum, phase portrait, and Poincar�e attractor plots in Fig. 22. Three radial bearing clearance
values, i.e., 80, 74 and 61 mm, are examined. As can be seen by comparing Figs. 21(b) and 22(a) and (b), the geared systemwith
MLE¼ � 0.005 (80 mm case) and � 0.002 (74 mmcase) has period two and period four DTE responses, respectively, confirmed
by the Poincar�e attractors. The 61 mmbearing clearance case in Fig. 22(c) was selected to illustrate chaotic DTE response based
on an MLE (þ0.06), from Fig. 21(b). The phase portrait orbit has a clear aperiodic response, the frequency spectrum has a
broadband character, and the corresponding Poincar�e dots form a strange attractor. These results show that the system
experiences period-doubling bifurcation with decreasing bearing clearance as the system transitions into chaotic responses.

4.3. Effect of gear mesh stiffness on oil whirl

Oil whirl is a rotor dynamics term describing a self-excited, shaft vibration anomaly common to rotating machinery
supported by oil film, fixed pad, journal bearings. The dominant symptom of oil whirl is a sub-synchronous limit cycle vi-
bration that is sustained by the journal bearing forces, as opposed to the external excitation such as rotor mass imbalance. In
this section, the effect of gear mesh stiffness on the oil whirl instability is investigated. The bearing supported geared rotor
pair is modeled as an autonomous (unforced) system with perfectly balanced rotors, and as such is analyzed utilizing the
autonomous shooting method. The multiple shooting/continuation method for autonomous cases developed in section 3 is
used for identifying periodic solutions. This approach for drawing the bifurcation diagrams was incapable of finding the
solutions near saddle-node bifurcations without manual assistance. The continuation algorithm was restarted near the
saddle-node bifurcation points and the step size was reduced to help the solutions converge. This typically requires two or
three restarts to plot one complete bifurcation diagram.

Fig. 23 shows a bifurcation diagram of the non-dimensional maximum and minimum vertical position of the rotor center
in the load direction versus operating speed. Results are shown for two mesh stiffness values, i.e., k0 ¼ 1e7 N/m and 1e9 N/m.
The input torque applied to the gear pair is 1000 N m. Run-up/run-down simulations are conducted separately, using direct
numerical integration, and the two results are combined to generate the figure. In Fig. 23(a), as the operating speed increases,
the jump-up phenomenon is observed at 37,500 rpm, which corresponds to the onset speed of oil whirl. Jump-down fre-
quency is also predicted at 34,500 rpmwith run-down simulation, and consequently, the amplitude of vertical rotor response
has been abruptly reduced at the same speed. The result with high mesh stiffness value, i.e., 1e9 N/m in Fig. 23(b), shows a
delayed onset speed of oil whirl compared with 1e7 N/m case, such that the jump-up and jump-down frequencies are
predicted at 39,500 and 37,000 rpm, respectively. From this result, it is verified that mesh stiffness variation not only affects
the high frequency vibration in a geared system but also may change the characteristics of hydrodynamic stability of a geared
system supported by journal bearings.

It should be noted that the result with direct numerical integration is incapable of identifying co-existing solutions and the
stability of responses. The bifurcation diagram is obtained with the continuation algorithm and the result is presented in
Fig. 23. Run-up and run-down simulations using direct numerical integration (a) mesh stiffness 1e7 N/m (b) mesh stiffness 1e9 N/m.



Fig. 24. Bifurcation diagram using shooting/continuation method with mesh stiffness 1e7 N/m and applied torque 1000 N m: (a) Bifurcation diagram using
continuation algorithm, (b) result from continuation algorithm compared with numerical integration, (c) revolution speed versus response frequency and (d)
zoom of (c).
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Fig. 24. In the case of mesh stiffness 1e7 N/m, in Fig. 24(a), the stable equilibrium position EP which is maintained over low
operating speeds switches to unstable motion after crossing Hopf bifurcation point at 37,210 rpm. The transition from stable
to unstable response is verified with the continuation algorithm, which provides the eigenvalues of the Jacobian matrix
moving out of the unit circle in the complex plane. The point ① corresponds to a Hopf bifurcation, where an unstable
subsynchronous response PS 1 emerges and approaches the saddle bifurcation point②. The amplitudes of the maximum and
minimum responses of PS 1 quickly grow as the speed decreases until the saddle point is reached. After the saddle bifurcation,
the subsynchronous branch becomes the stable response PS 2 and its maximum and minimum amplitudes slowly approach
the bearing clearance limit. The results using the continuation algorithm are drawn in the same figure with the direct nu-
merical integration results in Fig. 24(b). Two results agree well throughout the all speed ranges, except the unstable sub-
synchronous response PS 1 is only predicted with the continuation algorithm. The vibration frequencies of the branches are
shown in Fig. 24(c) and its zoomed version in (d). The frequency range where subsynchronous vibration was observed is
located between 17,000 and 23,000 rpm, which corresponds to the 45e50% of operating speed.

Bifurcation diagrams with three different mesh stiffness (1e7, 1e8 and 1e9 N/m) at 1000 N m torque are drawn using the
continuation algorithm in Fig. 25. The onset speed of oil whirl is increased from 37,210 to 39,310 rpm as the mesh stiffness
increases from 1e7 to 1e8 N/m. In contrast, the onset speed shift is relatively insignificant (110 rpm) between higher mesh
stiffness cases, i.e., 1e8 and 1e9 N/m. This result shows that the gear and the journal bearing parameters are coupled and the
variation of gear parameter may affect the hydrodynamic stability characteristics of fluid film bearings.

The effect of applied torque on oil whirl onset speed was presented in Refs. [30,33], and the results showed that higher
applied torque on the geared system delayed the oil whirl onset speed. This aspect of applied torque effect on oil whirl onset



Fig. 25. Bifurcation diagrams with various mesh stiffness values (1e7, 1e8 and 1e9 N/m) and with an applied torque of 1000 N m.

Table 3
Oil whirl onset speed with different torque and mesh stiffness (Identified utilizing Continuation algorithm).

Applied torque 1e7 N=m 1e8 N=m 1e9 N=m Onset speed difference

50 N m 10,450 rpm 10,480 rpm 10,490 rpm 40 rpm
200 N m 18,760 rpm 18,890 rpm 18,910 rpm 150 rpm
400 N m 25,360 rpm 25,780 rpm 25,800 rpm 440 rpm
600 N m 30,750 rpm 31,390 rpm 31,410 rpm 660 rpm
800 N m 34,780 rpm 36,070 rpm 36,130 rpm 1350 rpm
1000 N m 37,210 rpm 39,310 rpm 39,420 rpm 2210 rpm
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speed may be affected by the amplitude of gear mesh stiffness. The interaction between the applied torque and gear mesh
stiffness is investigated with various torque and mesh stiffness values in Table 3. Six applied torque amplitudes from 50 to
1000 N mwere applied as mesh stiffness varies from 1e7 to 1e9 N/m. The onset speed of oil whirl is identified by employing
the continuation algorithm to find the speed where the jump-up phenomenon occurs. As observed in the reference [30,33],
the onset speed generally increases with higher applied torques for all three stiffness cases. From the table, it is also evident
that the effect of mesh stiffness magnitude on the onset speed is closely related to the amplitude of torque values. When the
lowest applied torque (50 Nm) is applied, the onset speed delay caused by themesh stiffness variation from 1e7 to 1e9 N/m is
only 40 rpm. Meanwhile, the speed delay increases up to 2210 rpm with the application of the highest torque value
(1000 N m). This result confirms that the transition of oil whirl onset speed with different mesh stiffness is less significant at
lower applied torques.

5. Conclusions

The nonlinear behavior and bifurcation of a geared rotor system supported by fluid film journal bearings were investigated
employing a multiple shooting/continuation algorithm. Nonlinear effects included in the model are nonlinear fluid film force
in journal bearing, gear backlash, and time-varyingmesh stiffness. The present study confirms that the nonlinearities in a gear
pair may induce nonlinear behaviors such as the jump phenomenon, co-existing responses, subharmonic resonances and
chaotic responses in the five-degree-of-freedom, gear-journal bearing system model.

The effect of the gear applied torque and journal bearing paramaters on the nonlinear phenomena were investigated. The
simulation with varying gear input torque showed that the separation between jump-up and jump-down speed is reduced
with high input torques. The high input torque also induced a hardening effect which is not observed in low torque values. It
was also confirmed that as bearing L=D ratio and bearing lubricant viscosity are increased, or bearing clearances are
decreased, the frequency where the gear nonlinearity-induced jump phenomenon occurs is lowered, and the number of
multiple responses is increased, along with the double-sided contact of meshes. In addition, the influence of the input torque
and journal bearing parameters on the subharmonic responses were investigated. The simulation results revealed that the
high input torque gives rise to the hardening effect as well as the softening effect in the subharmonic resonance region. It is
also shown that small bearing L=D ratio, lubricant viscosity and bearing clearance suppress the subharmonic resonances.
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The impact of journal bearing parameters on the chaotic response were investigated via direct numerical integration,
bifurcation diagrams, spectrums, Poincar�e attractors and maximum Lyapunov exponents. As compared to the former studies,
which used the linearized bearing stiffness and damping coefficients, the present study utilized the nonlinear journal bearing
modeled with the finite element method. The results showed that the high-applied input torques to the gear suppress the
chaotic response in the system. Chaotic motions and period-doubling bifurcations were observed at constant operating speed,
as the value of lubricant viscosity and bearing clearance varied.

The effect of gear mesh stiffness on the oil whirl phenomenon of the journal bearing was also studied. Using the
continuation algorithm, it was verified that the increased gear mesh stiffness delays the onset speed of oil whirl. In addition,
the mesh stiffness effect on the oil whirl phenomenonwas sensitive to the magnitude of the gear input torque, as the amount
of the onset speed delay was found to be more significant with high input torques.

Future investigations for bifurcation and nonlinear dynamics of a gear supported by journal bearings will include thermal
effect in the bearing lubricant, other types of hydrodynamic journal bearings such as pressure dam or tilting pad bearings. A
more detailed gear-rotor model including a finite element shaft and a lubricant between gear meshes will also be developed.
Experimental verification will be conducted to obtain validation results for the theoretical models.
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