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Abstract

This paper presents an approach for blade loss simulation including thermal growth effects for a dual-rotor gas turbine

engine supported on bearing and squeeze film damper. A nonlinear ball bearing model using the Hertzian formula predicts

ball contact load and stress, while a simple thermal model estimates the thermal growths of bearing components during the

blade loss event. The modal truncation augmentation method combined with a proposed staggered integration scheme is

verified through simulation results as an efficient tool for analyzing a flexible dual-rotor gas turbine engine dynamics with

the localized nonlinearities of the bearing and damper, with the thermal growths and with a flexible casing model. The new

integration scheme with enhanced modeling capability reduces the computation time by a factor of 12, while providing a

variety of solutions with acceptable accuracy for durations extending over several thermal time constants.

r 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The design trend for high-performance rotating machinery such as gas turbine engines is to pursue high
power output and high efficiency. It requires lighter and more flexible rotors, which may operate above
bending critical speeds. Modern commercial aircraft gas turbines are usually designed as dual-rotor machines
that require complex analytical models composed of two rotors rotating at different speeds and interacting
through intermediate bearings. Blade loss simulations are always necessary to verify the reliability and safety
of a design.

Novel squeeze film damper designs [1–3] are introduced to reduce the severe nonlinearity due to highly
eccentric rotor motion during blade loss event when a squeeze film damper clearance is almost lost. A porous
squeeze film damper [1], which is made of a permeable sintered porous metal material, was proposed and
modeled using a rigid Jeffcott rotor for a blade loss simulation. In Refs. [2,3], a chambered porous damper
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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was designed, and blade loss experiments were conducted using a rotor operating above its first bending
critical speed.

Stallone et al. [4] developed an analytical method based on the modal synthesis to predict the transient
dynamic response of an aircraft engine when a fan blade is lost and they validated theoretical results with test
data. Alam and Nelson [5] used a shock spectrum procedure to estimate the peak displacement response of a
flexible rotor under high imbalance, however only a linear support model was used. Lawrence et al. [6] applied
the pitch and yaw moments of inertias as a function of speed to consider the non-axisymmetric bladed disk
and examined the effects of those moments on the rotor/disk response with a spooldown rate, and they [7] then
proposed a new blade/casing interaction model and compared it with the existing contact models. Using this
contact model Gallardo and Lawrence [8] derived explicit expressions of the stability boundary in terms of the
whirling frequency and the required damping. Sun et al. [9] conducted blade loss transient simulations using a
flexible dual-rotor engine mounted on detailed bearing and squeeze film damper models. The present research
makes significant improvements of the blade loss simulation model over Ref. [9] by including the thermal
effects and the staggered integration scheme as follows: (1) since the oil viscosity of squeeze film damper
decreases as the viscous power loss in the oil film causes the temperature to go up, the resulting damping force
is considerably decreased as the blade loss event goes on, (2) the staggered integration scheme significantly
saves the computation time for blade loss simulations with local nonlinearities, while providing a variety of
solutions with acceptable accuracy.

In this research, a flexible dual-rotor gas turbine engine including detailed support models is utilized for
blade loss simulations. The nonlinear ball bearing model is capable of predicting the maximum contact load
and stress between ball and race using Hertzian formula, while the viscous damping forces are obtained from
the pressure profile in the annular oil film using finite element analysis. Furthermore, a simple thermal model
estimates the thermal growths of bearing components due to rotor/rub ring friction and bearing drag torque
and the resulting thermal expansions. Blade loss causes the bearings and squeeze film dampers to heat up, and
the bearing clearance and the viscosity of oil film change slowly with time. The slow variation of the vibrations
requires a very long total simulation time and in addition, the numerical integration time step must be kept
very short because of the nonlinearities, especially the rub effect that includes an intermittently activated high
stiffness. A modal truncation augmentation method combined with a staggered integration scheme provides a
way to reduce the dimensionality and yet retain computational accuracy. The simulation results show that the
proposed approach is an efficient tool for simulating blade loss dynamics and thermal growths over durations
extending over several thermal time constants.

2. Blade loss simulation models

2.1. Dual-rotor gas turbine engine

Fig. 1 depicts a typical two-spool gas turbine engine [10]. The basic engine consists of an inner core rotor
called the power turbine and an outer core rotor called the gas generator turbine, which has two stages driving
an axial compressor. The power turbine rotor is supported by two main bearings located at the shaft
extremities, #0 and #5, while the gas generator rotor is supported principally by rolling-element bearings at
four locations: #1–#4. There are two intermediate differential bearings connecting the power turbine and gas
generator rotors. The squeeze film dampers are installed at the bearing locations to provide ample viscous
damping and to reduce the vibration amplitude and transmitted dynamic force.

The flexible gas turbine engine model shown in Fig. 2 is based on Ref. [10] and has a total of 38 lumped
masses with the power turbine divided up into 22 nodes and the gas generator into 16 nodes. Each node has 6
degrees-of-freedom, i.e., 3 translational and 3 rotational motions, and the system has a total of 228 degrees-of-
freedom. Polar moments of inertia of the rotors only at the turbine and compressor stages are considered. The
gas generator rotor is connected to a flexible casing model [11] composed of the total of 118 elements with 342
degrees-of-freedom. The casing model consists of 104 solid elements (8 nodes/element, 3 degrees-of-freedom/
node), 8 beam elements (2 nodes/element, 6 degrees-of-freedom) and 6 longitudinal spring-damper elements.
The elements have many shared nodes in a way that the total degrees-of-freedom of the casing model are 342.
The total degrees-of-freedom of the dual-rotor gas turbine engine model for the blade loss simulation are 691
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Fig. 1. Schematic two-spool gas turbine engine.
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including the thermal model and the nonlinear bearing and damper models, which will be introduced in the
next chapter. The arrow and Fu in Fig. 2 indicates the outboard end of the power turbine where the turbine fan
blade is located and the blade loss occurs.

2.2. Nonlinear ball bearing

The bearing components are assumed to have contact only within the elastic region, and they are modeled
as rigid except for local contact deformation. The angular motion is not considered here. The inner race
is externally loaded by the force vector {F} and has the displacement vector fX gT ¼ fx; y; zg as shown in
Fig. 3(a). The r�Z plane passes through the center of each ball with the angle f as shown in Fig. 3(c). In
Fig. 3(b), the inner race cross section at a ball is loaded by the contact force vector {Q} at the inner race groove
center p, which has a displacement vector {u}, i.e., fQgT ¼ fQr;Qzg and fug

T ¼ fur; uzg. The vectors for
different reference points are related by a transformation matrix T:

fug ¼ TfX g; fQg ¼ Tff g, (1)

where

T ¼
cos f sin f 0

0 0 1

� �
.

The vector {f} represents an equivalent force vector at the reference coordinate. The dynamic equations of
motion (eom) for the inner race are:

mif €X g ¼ fFg þ
Xn

j¼1

TT
j fQgj , (2)
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where n is the number of balls and mi is the mass of inner race. The contact load vector {Q} contributed by a
ball is expressed as

fQg ¼
Qr

Qz

( )
¼
�Qi cos ai

�Qi sin ai

( )
, (3)

where Qi is the contact load and ai is the contact angle between a ball and inner race.
Let the vector fvgT ¼ fvr; vzg be the displacements of a ball center. Then eom for an individual ball including

centrifugal force Fc is

mb

€vr

€vz

( )
¼

Qi cos ai �Qe cos ae þ F c

Qi sin ai �Qe sin ae

( )
, (4)

where the subscripts i, e represents the inner and outer races, respectively and mb is the mass of a ball.
Assuming the outer race is fitted into the squeeze film damper journal and is constrained along the axial
direction, eom for the outer race in conjunction with the journal are described as

ðme þmjÞ
€xe

€ye

( )
¼

Pn
j¼1

½Qe cos ae�j cos fj

Pn
j¼1

½Qe cos ae�j sinfj

2
6664

3
7775þ fF sfdg, (5)

where me and mj are the masses of the outer race and the journal, respectively, and {Fsfd} is the damping force
vector from the finite element squeeze film damper model.

Let wr be the displacement of the outer race groove center q in the radial direction and then displacements of
the groove center p and the ball center are geometrically related as in Fig. 4. The lengths loi, loe represent the
distances between the ball center and the groove centers under no external force, and the lengths li, le the
distances under external forces including preload. Using the geometric relation [12] between the displacements
of the groove centers and ball center, the following are obtained:

tan ai ¼
loi sin ao þ uz � vz

loi cos ao þ ur þ �i � vr

; tan ae ¼
loe sin ao þ vz

loe cos ao þ vr � wr � �e
, (6)

li ¼ �b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðloi cos ao þ ur þ �i � vrÞ

2
þ ðloi sin ao þ uz � vzÞ

2

q
, (7)

le ¼ �b þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðloe cos ao þ vr � wr � �eÞ

2
þ ðloe sin ao þ vzÞ

2

q
,



ARTICLE IN PRESS

loi

loe

li − �b

le − �b

vz

vr

uz

ur + �i

wr + �e

q

p

�i

ball center�o

�e

Fig. 4. Displacements of ball, inner race and outer race.

G. Sun et al. / Journal of Sound and Vibration 316 (2008) 147–163 151
where e indicates the thermal expansion of a bearing component. The relative deflections d at the contacts
are then

di ¼ li � loi; de ¼ le � loe. (8)

The point contact forces [13] are obtained from the Hertzian formula:

Qi ¼ kid
3=2
i

3

2
a_di þ 1

� �
; Qe ¼ ked

3=2
e

3

2
a_de þ 1

� �
, (9)

where a is linearly related to the coefficient of restitution of materials engaged in contact and has a value
ranging from 0.08 to 0.32 s/m for steel and bronze. The ball contact stress [13] at the center of an elliptical
contact area is calculated as

si;e ¼ �
3Qi;e

2pai;ebi;e
, (10)

where a, b are the semimajor and semiminor axes of the projected elliptical area and the minus sign indicates
compression.

2.3. Bearing thermal model

A ball bearing has a variety of heat sources, however two major sources were considered here during
the blade loss event: rotor/rub ring friction and bearing drag torque. The bearing drag torque is contri-
buted by bearing type, external load, lubricant and operating speed, and the empirical formula is available in
Ref. [13].

The rub ring, which is usually located closely to the support bearings, protects the system from being
damaged by an excessive vibration due to rotor imbalance. When the rotor whirl amplitude at the bearing
exceed the rub ring clearance, the power loss due to the rotor/rub ring contact is expressed as

Hs ¼ F f ðRrorÞ, (11)

where Ff is the friction force due to the mechanical rub, and Rr and or are the radius and the rotor speed,
respectively.

Jorgensen and Shin [14] proposed a bearing thermal model for high-speed milling machine, and Sun [12] a
thermal model for auxiliary bearings of an energy-storage flywheel system. Based on their model, a bearing
thermal model is developed assuming the heat flux to the radial direction is uniform. Fig. 5(a) shows a cross-
sectioned support bearing with thermal nodes and Fig. 5(b) the heat transfer network, which consists of
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Table 1

List of thermal resistances in heat transfer network

Ball/lubricant Inner race/shaft Outer race/journal

RLi �
rb

klð2priW i � pnr2bÞ
Ri ¼

lnðri=rsÞ

2pkiW i

Re ¼
lnðro=reÞ

2pkeW e

RLe �
rb

kl ð2preW e � pnr2bÞ
Rsr ¼

1

pksW i
Rj ¼

lnðrj=roÞ

2pkjW e

Rb �
1

nkbprb Rsa ¼
Ls

kspr2s
þ

1

hspr2s
Rh ¼

RhrRha

Rhr þ Rha

Squeeze film damper Housing

Rsf 1 ¼
lnððrj þ csf =2Þ=rjÞ

2pksf Lj

Rhr ¼
lnðrh=roÞ

2pkhLh

þ
1

hh2prhLh

Rsf 2 ¼
lnðrhi=ðrj þ csf =2ÞÞ

2pksf Lj

Rha ¼
Lh

2pkhðr
2
h � r2oÞ

þ
1

phhðr
2
h � r2oÞ

G. Sun et al. / Journal of Sound and Vibration 316 (2008) 147–163152
thermal resistances, heat masses and heat sources. The thermal resistances are a function of geometric and
material properties, and they are listed in Table 1. The following first-order thermal equation is then developed
for each node:

mhCp dT=dt ¼ Qi �Qo, (12)

where mh is a lumped heat mass, Cp is the specific heat, and Qi,o are the heat flux in and out, respectively.
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Assuming a linear temperature distribution the thermal expansion ee [15] of the outer race combined with
the squeeze film damper journal is given by

�e ¼
xe

3

ð1þ neÞre

re þ rj

½DTLeð2re þ rjÞ þ DTjð2rj þ reÞ�, (13)

where xe [m/m 1C] is the thermal expansion coefficient of the outer race, ne the Poisson’s ratio and DT the
temperature change from an initial value. Similarly, the thermal expansion of the inner race and shaft is
determined from

�i ¼
xi

3
ðDTs þ DTLiÞð1þ niÞri. (14)

The thermal expansion of a ball with uniform temperature distribution is

�b ¼ xbrb DTb, (15)

where rb is the ball radius. The thermal expansions of the bearing components are then substituted into the
Hertzian ball contact loads, Eqs. (9) and (10).

3. Modal analysis combined with staggered integration scheme

3.1. Modal truncation augmentation method

The response of a structure can be evaluated using the modal response method, which is a relatively simple
and well-established method. This method reduces the model into a much smaller number of dynamic degrees-
of-freedom. Unfortunately, this reduction process alters the modal representation of the applied loading and
can adversely affect the quality of the results. This can be overcome by representing the truncated modal
response using either the mode acceleration [16] or the modal truncation augmentation [17]. Dickens et al. [18]
have compared these two methods both theoretically and numerically, and have concluded that the modal
truncation augmentation method is superior to the mode acceleration method in that the mode acceleration
method is a special case of the modal truncation augmentation method and the modal truncation
augmentation results are more accurate.

Dynamics equation for a linear structural system is described as

½M�f €qðtÞg þ ½C�f _qðtÞg þ ½K �fqðtÞg ¼ fF ðtÞg ¼ fFoggðtÞ. (16)

The load vector {F(t)} can be divided into two parts: fF og is the invariant spatial portion and g(t) the time
varying portion. The load vector may be composed of several invariant portions. The eigenvalue problem is
given by

½K �½F� ¼ ½M�½F�o2 , (17)

where [F] is the matrix of retained eigenmodes and o2 represents a diagonal matrix of the squares of all
retained mode natural frequencies.

A force truncation vector {Ft} is defined to be the portion of the load vector that is not represented by the
retained modes which are far fewer than the total system modes. It is given by

fFtg ¼ fF og � fFsg, (18)

The modally represented spatial load vector {Fs} is derived as fF sg ¼ ½M�½F�½F�TfF og [11]. Since the force
truncation vector represents the portion that is lost due to modal truncation, it has to be reduced to improve
the accuracy of response. Then, form

½K � ¼ ½X �T½K �½X �;

½M� ¼ ½X �T½M�½X �;
(19)

where [X] is a matrix of column vectors {X}i, each representing the static response of the system to an
equivalent static load vector {Ft}i, i.e., [K]{X}i ¼ {Ft}i. Then, solve the reduced eigenvalue problem as
½K �½c� ¼ ½M�½c�½$�. The modal truncation vector {Z} can now be formed as fZg ¼ fX g½c�. The modal
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truncation vector is appended to the retained modal set to construct the pseudo-modal set: ½ ~F� ¼ ½F Z �. This
modal set is used to transform the physical coordinates into the modal coordinates as

fqðtÞg ¼ ½ ~F�fwðtÞg,

f _qðtÞg ¼ ½ ~F�f_wðtÞg,

f €qðtÞg ¼ ½ ~F�f€wðtÞg. (20)

Substituting Eq. (20) into Eq. (16), the augmented modal equation is

½ ~M�f€wðtÞg þ ½ ~C�f_wðtÞg þ ½ ~K �fwðtÞg ¼ f ~F ðtÞg, (21)

where

½ ~M� ¼ ½ ~F�T½M�½ ~F�,

½ ~C� ¼ ½ ~F�T½C�½ ~F�,

½ ~K � ¼ ½ ~F�T½K �½ ~F�,

f ~F ðtÞg ¼ ½ ~F�TfF ðtÞg. (22)

After completing the modal response analysis, the physical acceleration, velocity and displacements are
calculated using Eq. (20).

3.2. Staggered integration scheme

A staggered integration scheme [12] is proposed to greatly increase the computational efficiency without
losing the accuracy of solutions for a dynamic model, which has local nonlinearities and two types of solutions
with different time constants. The blade loss simulation with thermal growth is carried out using the modal
truncation augmentation method combined with the staggered integration scheme intermittently with a
thermal-only integration interval between thermo-mechanical intervals. A thermal-only interval is defined to
be one, during which only the bearing thermal equations are integrated with a relatively large time step and
constant power sources calculated during the previous thermal-mechanical interval. A thermal-mechanical
interval is defined to be one during which the complete dual-rotor dynamic equations and the bearing thermal
equations are integrated simultaneously with a relatively small time step. The integration technique is based on
the assumption that once the mechanical steady state is reached, there is no significant change in the dynamic
response. A power loss of the root-mean-square type is calculated for the last 5 cycles of a thermal-mechanical
interval and applied to the next thermal-mechanical interval as the heat source. After the completion of the
thermal-only interval integration, the final temperatures are used as the initial condition of the next thermal-
mechanical interval. This process can be used alternately several times to obtain extended simulation results.
The duration of each interval is decided on a trial and error basis.

4. Simulation results and discussion

4.1. Long duration blade loss simulations

Blade loss simulations are conducted to illustrate the efficiency of the modal truncation augmentation
method combined with the staggered integration scheme and the implementation of the flexible dual-rotor gas
turbine engine in the flexible casing supported on the nonlinear ball bearings and dampers. The Newmark Beta
method [19] is utilized to perform the numerical integration. Only the support bearings #0 and #5 of the power
turbine rotor are modeled as the nonlinear bearings, and the four bearings of the gas generator and two
intermediate differential bearings are modeled as a linear support system shown in Table 2. The dimensional
and material specifications for the bearings #0 and #5 and the squeeze film damper are listed in Table 3.

Fig. 6 shows a schematic drawing of the blade loss simulation model. The flexible two rotors are interacted
by the two linear bearings. The flexible power turbine rotor is connected to the nonlinear bearings by
exchanging the rotor displacement and velocity vectors X and _X into the nonlinear bearing force Fn_brg. The
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Table 2

Stiffness and damping of support system

Bearing number Stiffness (N/m)� 10�8 Damping (N s/m)� 10�3

1 1.751 1.751

2 1.751 1.751

3 0.876 1.751

4 0.701 1.751

Intermediate differential bearing 0.875 3.502

Table 3

Specifications of detailed bearing and damper

Dimension Bearing #0 Bearing #5

Geometry

Bore diameter, BD 5.08 (cm) 8.38

Outside diameter, OD 9 (cm) 11

Width 2 (cm) 1.6

Number of balls 21 27

Diameter of a ball 8.73 (mm) 9.53

Initial contact angle 15 (deg) 15

Axial preload 800 (N) 1100 (N)

Number of rows 1 1

Material

Density of ball: steel 7.8 (g/cm3) 7.8

Density of race: steel 7.8 (g/cm3) 7.8

Elastic modulus of ball 208 (GPa) 208

Poisson’s ratio of ball 0.3 0.3

Elastic modulus of race 208 (GPa) 208

Poisson’s ratio of race 0.3 0.3

Support system

Stiffness of o-ring 5254 (N/mm) 5254

Squeeze film damper journal radius 8 (cm) 10

Squeeze film damper journal length 3.2 (cm) 4

Oil viscosity, SAE 30 92 (cP) at 40 1C, 11 at 100 1C

Supply pressure 0.2MPa 0.2

Squeeze film damper radial clearance 0.635 (mm) 0.635

Rub ring clearance 0.508 (mm) 0.508
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nonlinear bearing model provides the journal motion xj ; _xj to the finite element squeeze film damper and
receives the viscous damping force from the finite element squeeze film damper in return. The bearing thermal
model calculates the thermal growths of the bearing components and the squeeze film damper oil film using
the power loss (PL). The bearing drag torque and the viscous dissipation in squeeze film damper are the main
PL in the thermal model. However, when the power turbine rotor makes contact with the rub rings the
mechanical power loss due to the friction is generated and it significantly influences the thermal growths and
the vibrations.

Fig. 7 shows the geometry, the finite element mesh and boundary conditions of the squeeze film
damper model [12]. Only the half journal is used assuming that the pressure profile is symmetric with respect
to the axial center of journal and the flow rate across the vertical plane cutting the axial center is zero, i.e.,
qn ¼ 0 along ~Y ¼ Lj=2 in Fig. 7(b). The supply pressure Ps is applied to the journal ends. Using a simple
triangular element the total 128� 64 FEs are used to calculate the pressure profile and the resulting
damping force.
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The power turbine and gas generator rotors are rotating at 16,000 and 15,000 rev/min, respectively. The
running speeds are constant during the simulation. The lowest two forward, synchronous critical speeds are
calculated to be 8500 rev/min and 10,200 rev/min. Several revolutions of time response under low imbalance
are simulated to obtain a steady-state dynamic response prior to the blade loss event. A sudden imbalance
force due to the turbine fan blade loss is then applied at the outboard end of the power turbine rotor at the
simulation time 0.01 s. The applied amount of force due to blade loss varies from 712 to 14,252N depending
on the severity. Initial temperature of the bearing components and ambient temperature are set to at 30 1C.
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The integration time step for the thermal-only interval is set to 1ms to estimate ball contact load and stress
during the blade loss, while that for the thermal-only interval is set to 0.1 s. Fig. 8 shows a 2min simulation
time line composed of the 6 thermal-only and the 5 thermal-only intervals.

From Figs. 9 to 14 are provided the simulation results for the unbalance force of 2850N. Fig. 9 shows the
dynamic response and orbit plot of the power turbine rotor at the bearing #0, while Fig. 10 shows those at the
bearing #5. The dotted circle in Fig. 9(c) indicates the rub ring clearance of 0.508mm. The whirl amplitude at
the bearing #0 reaches about 0.2mm and that at the bearing #5 less than 0.01mm after a short period of the
transient response. The whirl amplitude at the bearing #0 noticeably increases from the transient amplitude
0.2mm in Fig. 9(a) up to about 0.3mm in Fig. 9(b) because of the viscosity drop of squeeze film damper due to
thermal growths. Meanwhile the whirl amplitude at the bearing #5 barely increases.

The transmissibility at a bearing is defined to be

T ¼
jF sfd þ F csj

jFuj
, (23)

where Fu is the unbalance force induced by blade loss, Fsfd is the squeeze film damper force and Fcs is the
centering spring force. Fig. 11 shows that the steady-state transmissibility at the bearing #0 reaches around
1.25 and that at the bearing #5 is less than 0.04 at the end of simulation. The transmissibility at the bearing #0
barely changes with the given unbalance force during the 2min simulation. Fig. 12 shows the maximum
contact stress between the outer race and ball at each time step. As expected, the contact stress at the bearing
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Fig. 10. (a) Transient and (b) steady-state responses: solid, x-axis; dotted, y-axis and (c) orbit plot of power turbine rotor at bearing #5.
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#0 where the fan blade loss occurs is much higher than that at the bearing #5. The transient state with high
frequency and high amplitude just after the blade loss is observed, but soon it is damped out. As shown in
Fig. 12(b), the transition from the thermal-only to thermal-mechanical interval introduces the transient
vibration, however it goes away soon. The contact stress is used as an index for permanent damage on the
ball/race contact area initiating at 3200MPa. Figs. 13 and 14 show the thermal growths of the bearing
components and the squeeze film damper oil. Since the drag torque of bearing #5 is greater than that of
bearing #0 and there was not any mechanical contact of rotor and rub ring, the temperatures of the bearing #5
become higher than those of the bearing #0. It is also noticed that since the squeeze film damper oil heats up
by the journal motion the oil temperature of the bearing #0 is 18 1C higher than that of the bearing #5 is at the
end of simulation.

Table 4 shows the 11 result categories selected to compare the simulation results, and their outcomes
induced by the unbalance amount are summarized in Table 5. The rotor/rub ring contact does not occur below
the imbalance force of 2850N. The steady-state mechanical power loss of 18,990W due to the rotor/rub ring
contact occurs at the unbalance case of 5700N, which contributes to the drastic thermal increases of the
bearing #0. The final temperatures as well as the power loss of the bearing #0 increase continuously with the
imbalance level beyond this amount.

Note that the temperatures of each component of the bearing #5 are similar regardless of the applied
imbalance amount and they are higher than those of the bearing #0 except for the squeeze film damper oil
before the rotor/rub ring contact occurs because the bearing #5 generates higher drag torque, however those of
the bearing #0 drastically increase after the rotor whirl amplitude exceeds the rub ring clearance 0.508mm
because the power loss due to the friction becomes the major heat source. The final temperature of the inner
race of the bearing #0 increases approximately up to 200 1C in the largest-imbalance case. The ball contact
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stresses at the last two imbalance cases reach the incipient plastic flow limit 3200MPa [13], which initiates
permanent strains on the ball/race contact area. When the permanent strain is initiated on a ball or a race
inside the ball bearing, the bearing starts making an excessive vibration and noise, and the initial damage
due to the permanent strain is further developed because the bearing is a high-precision machine element
rotating at high speed. The maximum contact stress would have been much higher unless the rub ring was
installed.

4.2. Efficiency of staggered integration scheme

In order to verify the computational efficiency including accuracy of the proposed integration scheme, the
simulations results at the bearing #0 with the imbalance force of 2850N are used to compare the cases with
and without the staggered integration scheme. The total simulation time is set to 2 s. The case without the
staggered integration scheme uses the time step of 1ms during the entire simulation, while the case with the
staggered integration scheme adopts 3 thermal-only intervals (50 rev) with the time step of 1ms and 2 thermal-
only intervals (1.815 s) with the time step of 0.1 s.

Table 6 shows the comparison of the results at the end of simulation. The dynamic response, the ball contact
load and stress, the power loss, and the final temperatures of the bearing components show less than 5%
relative errors (Er), while the computation time is improved by a factor of 12 by using the proposed
integration scheme. Therefore the proposed staggered integration scheme is verified as an efficient tool for
obtaining and analyzing time integrated solutions of the gas turbine engine blade loss dynamics with thermal
growths and nonlinear multi-bodies dynamics support models.
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Table 4

Simulation results for comparison

No Title

Result 1 (mm) Steady-state whirl amplitude

Result 2 Transmissibility

Result 3 (N) Maximum contact load

Result 4 (MPa) Maximum contact stress

Result 5 (W) Power loss due to rotor/rub ring contact

Result 6 (W) Power loss due to drag torque

Result 7 (W) Power loss due to viscous dissipation of squeeze film damper

Result 8 (1C) Final temperature of inner race

Result 9 (1C) Final temperature of ball

Result 10 (1C) Final temperature of outer race

Result 11 (1C) Final temperature of squeeze film damper oil
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5. Conclusions

In this paper is developed an efficient and accurate approach for simulating blade loss effects on vibrations
and thermal growths for a dual-rotor gas turbine engine utilizing the modal truncation augmentation
combined with the staggered integration scheme, which greatly increases the computational efficiency without
significantly penalizing and enables a 2min blade loss simulation. The nonlinear bearing model estimates the
ball contact load and stress and the thermal expansions of the components during blade loss, and the squeeze
film damper model calculates the nonlinear damping force from an oil pressure profile using FEM. The
one-dimensional bearing thermal model predicts the thermal growths of the bearing components due to the
rotor/rub ring contact, the bearing drag torque and the viscous power loss in the squeeze film damper.
Including the thermal effects improves the blade loss simulation model in that since the oil viscosity of squeeze
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Table 5

Summary of blade loss simulation results

Unbalance, N 712 1425 2850 5700 8551 11,401 14,252

Result 1 (mm)

Brg #0 0.0512 0.1046 0.2958 0.5438 0.5652 0.6795 0.7087

Brg #5 0.004 0.0032 0.0084 0.0112 0.0104 0.0153 0.0114

Result 2

Brg #0 1.03 1.02 1.27 1.62 1.21 1.05 1.21

Brg #5 0 0.044 0.038 0.023 0.014 0.0096 0.0075

Result 3 (N)

Brg #0 198.85 352.7 658.6 972.2 1351.5 2073.4 2252.5

Brg #5 100.97 137.85 158.45 168.86 164.6 310.7 436.6

Result 4 (MPa)

Brg #0 1449.6 1754.8 2161 2460.4 2745.8 3167.1 3255.5

Brg #5 1092.7 1212.1 1269.7 1290.1 1286 1589.4 1780

Result 5 (W)

Brg #0 0 0 0 18,990 31,960 105,860 128,690

Brg #5 0 0 0 0 0 0 0

Result 6 (W)

Brg #0 348.3 354.07 368.1 349.2 337.3 359.6 424.1

Brg #5 622.9 623.96 624.6 624.7 624.7 625.7 624.6

Result 7 (W)

Brg #0 30.56 124.45 638.81 1924.55 2079.6 2221.7 2806.4

Brg #5 0 0.32 0.95 1.33 1.2 1.72 1.26

Result 8 (1C)

Brg #0 68.2 69.5 74.4 115.2 145.1 171.7 197.1

Brg #5 86.1 86.1 86.1 86.2 86.2 86.1 86.2

Result 9 (1C)

Brg #0 68.9 70.3 75.4 114.1 141.5 165.8 191.7

Brg #5 86.2 86.2 86.3 86.3 86.3 86.3 86.3

Result 10 (1C)

Brg #0 67.1 68.41 73.7 110.2 135.2 157.5 182.9

Brg #5 83 83 83.0 83.1 83.1 83.1 83.1

Result 11 (1C)

Brg #0 33.0 34.8 44.3 75.1 83 90 123.3

Brg #5 36.7 36.7 36.7 36.7 36.7 36.7 36.8

Table 6

Comparison of simulation results with and without staggered integration scheme (Intel P. III 1GHz Microprocessor)

Results w w/o Er (%)

Result 1 (mm) 0.2574 0.2656 3.1

Result 2 1.258 1.26 0.3

Result 3 (N) 619.8 615.4 0.7

Result 4 (MPa) 2117.8 2112.6 0.25

Result 6 (W) 599.85 596.7 0.5

Result 7 (W) 587.7 592 0.7

Result 8 (1C) 33.2 33.5 0.9

Result 9 (1C) 35.1 35.5 1.2

Result 10 (1C) 32.7 32.9 0.6

Result 11 (1C) 36.9 37.7 2.1

Comp. time (h) 3.5 43.9 N/A
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film damper fully depends on the temperature, the damping force drop for a long duration is explained
through the proposed simulation model.

Major power loss due to the power turbine rotor/rub ring contact was generated above the imbalance force
of 5700N, which contributed to the abrupt thermal increase of the bearing components. The inner race
temperature of the bearing #0 reached approximately 200 1C, and the squeeze film damper oil temperature
increased to 123 1C in the largest-imbalance case. The ball contact stresses in the two largest-imbalance cases
nearly exceeded the incipient plastic flow limit 3200MPa, which resulted in the permanent strains on the
contact surface of ball and races.

The comparison of the simulation results with and without the staggered integration scheme showed that
the proposed modal truncation augmentation in conjunction with staggered integration scheme greatly
reduced the computation time by a factor of 12, while providing a variety of simulation results and
maintaining the simulation relative errors less than 5%.

For future work, the current simulation model will be enhanced to include the deceleration torque and the
high-temperature magnetic bearings, which provide active vibration control.
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