
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 263 (2003) 549–567

Large motion tracking control for thrust magnetic bearings
with fuzzy logic, sliding mode, and direct linearization

T.P. Minihana,*, S. Leia, G. Suna, A. Palazzoloa, A.F. Kascakb, T. Calvertc

aDepartment of Mechanical Engineering, Texas A&M University, MS 3123, College Station, TX 77843-3123, USA
bUS Army at NASA Glenn, Cleveland, Oh, USA

cNaval Surface Warfare Center, Carderock Division, Philadelphia, PA, USA

Received 21 August 2000; accepted 18 June 2002

Abstract

Conventional use of magnetic bearings relies on a zero reference to keep the rotor centered in the radial
and axial axes. This paper compares different control methods developed for the alternate control task of
tracking an axial dynamic target. Controllers based on fuzzy logic, sliding mode, and direct linearization
were designed to meet this task. Performance criteria, such as maximum axial displacement, minimum
phase lag and I2R power losses were compared for each controller. The large motion, tracking problem for
a rotor has utility in applications where dynamic seal clearances are required. This has a variety of potential
applications in turbo-machinery, such as active stall control.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Active magnetic suspension technology has found a wide range of applications in recent years.
Basically, these applications fall into two categories: those using large air gaps, such as wind
tunnel model suspensions, and those using small air gaps such as magnetic bearings in fast
rotating systems. The development of magnetic bearings in rotating machinery has increased
significantly due to their low-power loss and high-speed operation. Since the shaft and the bearing
assembly have no contact between one another, frictional loss, which grows drastically with speed
increase, is greatly reduced. Active magnetic bearings require closed-loop feedback, which offers a
way to support the rotating shaft as well as to control the vibration. In most industrial
applications, the feedback system includes a linear PID controller with compensators, power
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amplifiers, magnetic actuators and inductive, eddy current or optical sensors [1]. In addition to the
widely applied PID controllers, advanced control strategies such as optimal control [2], m-
synthesis control [3], H-N control [4,5] can be found in some applications. All these methods are
based on linear systems theory and require linear models. Non-linear control techniques were also
applied to active magnetic bearings. Sliding mode control [6–8] and fuzzy-logic-based control
[9,10] can be found in several papers, but are limited to regulator (static target) applications. A
sliding mode controller [8] for thrust magnetic bearing was designed and verified by experiment
for two rotor trajectories: an overdamped second order system of frequency 20 rad/s and a 2Hz
sinusoidal signal of 0.1mm amplitude.
The purpose of this research is to develop robust, non-linear controllers for active magnetic

bearings and to show their advantages over linear, PID controllers for tracking a sinusoidal
reference in the axial direction. A PID controller was initially designed to accomplish this,
however, the desired large amplitudes could not be obtained and substantial phase lags resulted.
Three types of non-linear controllers were then investigated: fuzzy logic integrated with PD
control, sliding mode, and direct linearization. Each controller was simulated with identical plant,
actuators, and closed-loop system. A comparison of the three controllers was made based on the
performance characteristics; tracking accuracy, power losses, phase lag, and computation
demand. In addition to providing a comparison between the three methods the paper provides an
original contribution for high-frequency, large target motion tracking control.

2. Plant, actuator and sensor models

The plant consists of a rigid rotor suspended on a five-axis magnetic bearing system as shown in
Fig. 1. Only axial motion is considered in this study and it is actuated by the thrust bearing shown
in Fig. 2. The total current is a combination of bias current i0 and control current ic; and circulates
through coils on the thrust bearing stator.
Material reluctance was included in the flux path models for the stator and rotor. The resulting

expression for flux density in the opposed electromagnets is expressed in Eq. (1) and is derived
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Fig. 1. Typical magnetic suspension system for a rotor.
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from Ampere’s Law:

B7 ¼
Ni7

ðLstator=mstator þ Lrotor=mrotor þ 2ðs08x=m0ÞÞ
; ð1Þ

where s0 is the nominal air gap between rotor and magnetic bearing, Lstator and Lrotor are the
lengths of the flux paths in the stator and rotor, respectively, mstator and mrotor are the permeability
of the stator and rotor, respectively, and m0 is the permeability of air in free space.
The magnetic force per pole pair is given below, where B is the flux density, f is the fringe

factor, Ap is the pole area. This represents the magnetic force per pole pair, assuming two air gaps
per pair:

Fmag ¼
ðfBÞ2Ap

m0
: ð2Þ

A fringe factor f of 0.8 was used to account for fringing effects. A piecewise linear approximation
for the stator and rotor material B–H curve was used to represent permeability and saturation
characteristics.
Substituting Eq. (1) into Eq. (2), the equations of axial motion for the rotor due to the magnetic

force can be expressed as

m .x ¼
X

Fmag ¼ kf 2
ði0 þ icÞ

2

ðs0 � xÞ2
�

ði0 � icÞ
2

ðs0 þ xÞ2

� �
; ð3Þ

where k ¼ ApN2m0Nc=4; Nc is the number of c-cores for one stator, i0 is the bias current, and ic is
the control current from the power amplifier.
Power amplifiers drive current through the actuator coils and are modelled with voltage and

current saturation due to the inductive and resistive electrical loads. A current servo loop was also
included in the power amplifier model with a bandwidth of 2500Hz.The open-loop transfer
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Fig. 2. Typical thrust bearing geometry with displacement and current variables.
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function for the power amplifier is written as

GPA ¼ KPA
1

ðLs þ RÞ
; ð4Þ

where KPA is the current servo feedback gain and L and R are the inductance and resistance of one
coil, respectively. The KPA current sensor servo feedback gains are adjusted to obtain the desired
bandwidth and DC gain (1A/V).
The actuators (opposed electromagnets) were modelled with a 1000Hz cutoff frequency ðfaÞ

based on finite element field simulations. The actuator transfer function is

Gact ¼
1

ðtas þ 1Þ
; ð5Þ

where ta ¼ 1=ð2pfaÞ:
Sensor dynamics are modelled as

Gsen ¼
xs

ðtss þ 1Þ
; ð6Þ

where the sensitivity is xs ¼ 7874V/m, the cutoff frequency is fs ¼ 3000Hz; and ts ¼ 1=ð2pfsÞ: A
closed-loop block diagram of the axial magnetic bearings system is illustrated in Fig. 3. The total
current in each actuator consists of a bias current and control current with the control current
equal and opposite between the two actuators.
Fig. 4 shows the non-linear relationship between the magnetic force and total current. This also

shows the inertial force that results with a zero to peak displacement of 1.27� 10�4m (33% of the
air gap) and frequency of 150Hz. The remaining parameter values are m¼ 22:6 kg and
k¼ 5:065� 10�6 Nm2/A2. Some notable features of Fig. 4 are: (1) the magnetic force is clearly

Fig. 3. Closed-loop system.
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non-linear and has a distinct peak versus control current, for a fixed bias current; (2) the peak
negative force (load capacity) varies significantly with bias current; (3) a certain minimum level of
bias current is required to balance the inertial force; (4) the force cannot exceed that which occurs
ðFsatÞ when one actuator stator is fully saturated and the other is flux free, with Bsat ¼ 1:8T:
A control objective is to track a 150Hz displacement reference of 1.27� 10�4m sinusoidal

amplitude:

Xamplitude ¼ 1:27� 10�4 m: ð7Þ

The required force amplitude according to Newton’s law must be

Finertial ¼ �mðXamplitudeÞð2pfshÞ
2; ð8Þ

where fsh is the shaking frequency. The magnetic force must be sufficient to balance the inertial
force:

maxjFmagj > jFinertial j ¼ 2481:8 N; ð9Þ

which is independent of the control algorithm. Eq. (3) is used to plot the control current ic as a
function of Xamplitude, with the bias current i0 as a parameter. Given the Xamplitude, Fig. 5 may be
employed to estimate the bias and control current requirements for the preliminary design of the
actuator. For example, if Xamplitude¼ 1� 10�4 m and the bias current is 5A, then from Fig. 5
ic ¼ 9:5A. On the other hand, if Xamplitude¼ 1� 10�4 m and the bias current is 4A, then the target
displacement cannot be obtained, for the given shake frequency (150Hz) and rotor mass.

Fig. 4. Actuator force versus control current with Xamplitude ¼ 1:27e-4m: o, 4 A;&, 5 A; +, 6 A;B, 7 A; *, 8A; D, 9A.
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3. Controller theory and model

3.1. Fuzzy logic control for tracking

Fuzzy logic theory was first established in Zadeh’s seminal paper in 1965 [11]. Mamdani applied
fuzzy logic to dynamics [12] about 10 years later. The Mamdani architecture of a fuzzy logic
controller is based on qualitative and empirical knowledge of human beings. Later Takagi and
Sugeno established a fuzzy model, called the Takagi–Sugeno model [13], which can be more easily
used for analytical purposes. A Mamdani architecture is used here to build a non-linear rule-based
fuzzy logic control system. Fuzzy logic controllers for active magnetic bearings are synthesized
and designed for stabilizing the system during the command following process. The antecedent
and consequent of each rule are defined in terms of input and output variables in predefined
membership functions. These membership functions possess qualitative descriptions, which
generalize the notion of assigning a single degree to a specific response severity or corrective action
level. The rule base is constructed to provide a non-linear resistance with respect to the position
error of the rotor. The purpose of this is to compensate for the electromagnetic force Fmag, Eq. (3),
which is non-linear in both the displacement x and the active control current ic (see Figs. 4 and 5).
In order to design a fuzzy logic rule base, it is necessary to investigate how the runner responds

to the control signal. When the error signal e ¼ xd2x > 0; where xd is the desired input, positive
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Fig. 5. Required control current as a function of desired displacement and bias current, at fsh ¼ 150Hz: B, 4A bias

current; ? intermediate values; +, 10A bias current.
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control current ic > 0 is required to further move the runner toward the desired position. On the
other hand, when the error signal e ¼ xd2xo0; negative control current ico0 is required.
Analogous logic is used to formulate all membership functions and the entire rule base. Figs. 6
and 7 show two input membership functions: error voltage (ue) and change-of-error voltage (ude),
which correspond to the proportional and derivative parts of the error, respectively.
Fig. 8 shows the output membership function which consists of five triangular sets. The rule base

is shown in Fig. 9 and has 25 rules. The output ctrl is a control voltage to the power amplifiers.

3.2. Sliding mode control for tracking

Next, a sliding mode control (SMC) or so-called switching control [14] is applied to axial
motion tracking of a rotor AMB system. This control method can be applied to non-linear system

Fig. 7. Input membership function ude in MATLAB GUI.

Fig. 6. Input ue membership function in MATLAB GUI.
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in the presence of uncertain parameters provided that the upper bounds of the uncertain
parameters are known. SMC design consists of two steps: (1) define the sliding surface upon which
the system has the desired stability and tracking properties, and (2) design the non-linear

Fig. 8. Output membership function ctrl in MATLAB GUI.

1. If (ue is vneg) and (ude is vneg) then (ctrl is vneg) (1) 
2. If (ue is vneg) and (ude is neg) then (ctrl is vneg) (1)  
3. If (ue is vneg) and (ude is zr) then (ctrl is neg) (1)    
4. If (ue is vneg) and (ude is pos) then (ctrl is zr) (1)    
5. If (ue is vneg) and (ude is vpos) then (ctrl is zr) (1)   
6. If (ue is neg) and (ude is vneg) then (ctrl is vneg) (1)  
7. If (ue is neg) and (ude is neg) then (ctrl is vneg) (1)   
8. If (ue is neg) and (ude is zr) then (ctrl is neg) (1)     
9. If (ue is neg) and (ude is pos) then (ctrl is zr) (1)     
10. If (ue is neg) and (ude is vpos) then (ctrl is zr) (1)   
11. If (ue is zr) and (ude is vneg) then (ctrl is neg) (1)   
12. If (ue is zr) and (ude is neg) then (ctrl is neg) (1)    
13. If (ue is zr) and (ude is zr) then (ctrl is zr) (1)      
14. If (ue is zr) and (ude is pos) then (ctrl is pos) (1)    
15. If (ue is zr) and (ude is vpos) then (ctrl is pos) (1)   
16. If (ue is pos) and (ude is vneg) then (ctrl is zr) (1)   
17. If (ue is pos) and (ude is neg) then (ctrl is zr) (1)    
18. If (ue is pos) and (ude is zr) then (ctrl is pos) (1)    
19. If (ue is pos) and (ude is pos) then (ctrl is vpos) (1)  
20. If (ue is pos) and (ude is vpos) then (ctrl is vpos) (1) 
21. If (ue is vpos) and (ude is vneg) then (ctrl is zr) (1)  
22. If (ue is vpos) and (ude is neg) then (ctrl is zr) (1)   
23. If (ue is vpos) and (ude is zr) then (ctrl is pos) (1)   
24. If (ue is vpos) and (ude is pos) then (ctrl is vpos) (1) 
25. If (ue is pos) and (ude is vpos) then (ctrl is vpos) (1) 

Fig. 9. The rule base for fuzzy logic control.
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controller gain for driving the system to the sliding surface and making it remain there using the
sliding condition from the Lyapunov stability theorem.
The time-varying sliding surface s for nth order system is defined by scalar function

sðX ; tÞ ¼
d

dt
þ l

� �n�1

*x; ð10Þ

where X ðtÞ ¼ ½x; ’x;y; xðn�1Þ	T is the state vector, *x ¼ x � xd ; x is the state of given system, xd is
the desired input, l is strictly positive, and n is the order of system. For the second order system,

s ¼
d

dt
þ l

� �
*x ¼ ’*x þ l *x: ð11Þ

Based on the Lyapunov stability theorem, the so-called sliding condition for stability can be
defined as

1

2

d

dt
ðs2ðX ; tÞÞp� Zjsjp0; ð12Þ

where Z is a strictly positive constant. Differentiate both sides of Eq. (11) and substitute Eq. (3):

’s ¼ .*x þ l ’*x ¼ .x � .xd þ l ’*x ¼
1

m
Fmag � .xd þ l ’*x: ð13Þ

It is assumed that the force constant k from Eq. (3) is uncertain. This uncertain parameter is
extracted from Fmag;

’s ¼
k

m
Fk � .xd þ l ’*x; ð14Þ

where Fk ¼ Fmag=k: Let k=m equal b; and then the nominal Fk; #Fk to make ’s ¼ 0 is obtained from
Eq. (14) as

#Fk ¼ #b�1ð .xd � l ’*xÞ: ð15Þ

It is assumed that b can be bounded by the inequality

0obminpbpbmax: ð16Þ

The geometric mean of b is selected for the estimated gain b; #b: From the definition of geometric
mean,

#b ¼ bminbmaxð Þ1=2: ð17Þ

Let D be the maximum error, which exists between the uncertain value k and the nominal value, #k;
and then inequality (16) can be written in the form

1

b
p

#b

b

 !
pb; ð18Þ

where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ DÞ=ð1� DÞ:

p
The following sliding mode controller is obtained by adding a

discontinuous term across the sliding surface s ¼ 0 to Eq. (15):

Fk ¼ #b�1ð .xd � l ’*x � x satðs=FÞÞ; ð19Þ
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where x is the controller gain and F is the boundary layer thickness of saturation function satð:Þ
shown in Fig. 10. The discontinuous term is added for the purpose of making the sliding surface
approach s ¼ 0 and remain there, compensating for the imperfection of the estimated force in
Eq. (15). Substituting Eq. (19) into inequality (12) and applying inequality (18) the following
controller gain is obtained:

x ¼ j1� bj j .xd � l ’*xj þ bZ: ð20Þ

From the non-linear magnetic force Eq. (3),

Fk ¼ f 2
ðio þ icÞ

2

ðso � xÞ2
�

ðio � icÞ
2

ðso þ xÞ2

� �
: ð21Þ

The control current, ic; is directly solved from Eq. (21),

ic ¼ �ioðs2o þ x2Þ þ ðs2o þ x2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2o þ Fk=f 2sox

q� �
=ð2soxÞ: ð22Þ

In the case that x ¼ 0 (singular point of Eq. (22)),

ic ¼ Fk=KI ; ð23Þ

where KI ¼ 4f 2ðio=s2oÞ:

3.3. Direct linearization control for tracking

This controller’s strategy is to produce a closed loop control force which is linearly proportional
to the tracking error and error rate. The non-linear magnetic force equation (3) is equated to a
first order linear expression based on rotor position and velocity error:

Fdesired ¼ C ’*x þ K *x; ð24Þ

Φ
Φ−

)( Φ
ssat

s

1

1−

Fig. 10. Discontinuous function in sliding mode controller.
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where *x ¼ x � xd ; *x and ’*x are the tracking errors and C and K are damping and spring constants
realized actively via the feedback control. The required control current is from Eq. (3):

ic ¼
i0

2s0x
�ðs20 þ x2Þ þ ðs20 � x2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4s0x

f 2i20N2Apm0
ðC ’*x þ K *xÞ

s( )
: ð25Þ

Since this expression is undefined for zero position, the quadratic equation must be solved again
to yield the correct control current under this condition

ic ¼
s20ðC ’*x þ K *xÞ
f 2i0N2Apm0

: ð26Þ

Eqs. (25) and (26) were utilized to generate the control currents in MATLAB simulations. The
material reluctance is omitted in the controller design but is included in the flux density
calculations to derive the ‘‘actual’’ force in the actuator for the closed-loop simulation. This was
done in order to reduce the controller’s computational demands to obtain the control currents.
Selection of effective damping and spring coefficients utilized in the controller is guided by

drawing an analogy to the support motion problem in vibration theory. Small phase lags between
the actual and desired motions then require small ratios of excitation frequency to natural
frequency. This analogy is justified by comparison of the equations of motion.

4. Simulation results

Simulations were performed with a sinusoidal reference input of 150Hz and the target (desired)
displacement. Two types of the materials are used for the rotor in the simulation: Steel and
Beryllium alloy. The latter material is a high modular alloy with less than 1/3 the density of steel.
The objective is to maximize the steady state axial displacement amplitude, up to 1.27� 10�4m,
with the lowest possible phase lag, tracking error, and minimal I2R power losses. The power losses
per pole consisted of a DC term from the bias current and a RMS term from the resulting control
currents:

W ¼ i20R þ ð0:707jicjÞ
2R: ð27Þ

The magnetic bearing design parameters shown in Table 1 play an important role in determining
the actuator forces and were based on constraints specific to our application. Since the flux density
is saturated at 1.8T, the maximum magnetic actuator force is limited in the simulations to

Fmax ¼
ðBsatf Þ

2ApNc

m0
: ð28Þ

Substituting the magnetic bearing parameters from Table 1 into Eq. (28), the maximum magnetic
force is calculated as

Fmax ¼ 2515 N: ð29Þ

Matlab simulations were completed for each type of controller in order to compare the maximum
stroke, phase lag, tracking accuracy, and I2R power losses.
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4.1. Tracking example with fuzzy logic controller

This simulation was performed using Simulink and its Fuzzy Logic Toolbox, with five
nonlinearities from Faraday’s Law, Ampere’s law, Maxwell stress tensor, and power amplifier and
material saturations. The membership sets and rules for this example are given in Figs. 6–9. The
simulation results are given in two parts: power loss and tracking performance, which are
described below.

4.1.1. Power loss

The total power loss is obtained as follows. Bias current: i0 ¼ 8A (steel), 4.15A (beryllium);
amplitude of control current: jicj ¼ 8A (steel), 3A (beryllium). The total power loss for both
stators containing a total of 8 c-cores is

W total
steel ¼ 203:2 W; W total

beryllium ¼ 46 W: ð30Þ

4.1.2. Tracking performance

Fig. 11 demonstrates the tracking performance for the steel rotor and reference input with
shaking amplitude of 1.27� 10�4m. The response follows the input command with little phase lag
for the steel rotor. Fig. 12 shows that the simulation results for the beryllium rotor are very similar
except for a slightly larger phase error.

4.2. Tracking example with sliding mode controller

Tables 2 and 3 show the performance of sliding mode controllers depending on the parameters
in Eqs. (19) and (20). From the tables, it is observed that the smaller l becomes the lower tracking

Table 1

Magnetic bearing design parameters

Parameter Symbol Value Unit

Cutoff frequency of sensor fs 3000 Hz

Cutoff frequency of power amplifier fPA 2500 Hz

Cutoff frequency of actuator fa 1000 Hz

Mass of rotor (steel, beryllium) m 22, 6 Kg

Force constant k 5.065� 10�6 Nm2/A2

Fringe factor f 0.83

Bias current (steel, beryllium) io 8, 4 A

Nominal air gap so 3.81� 10�4 m

Pole area Ap 0.000355 m2

Number of c-cores per stator half Nc 4

Number of turns N 107 turns

Resistance of one of four poles R 0.26 O
Inductance of one of four poles L 0.00637 H

Permeability of air mo 4p� 10�7 H/m

Saturation flux density Bsat 1.8 T
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error and power loss. Fig. 13 shows the tracking error, tracking response, control current, and
magnetic force of the steel rotor when l equal to 10 is applied. The SMC could shake up to
1.27� 10�4m with 27.7% tracking error, 6.751 phase lag and 188.6W heat loss. The bias current
8A was used while the steady state control current 7.4A was observed. The tracking response for
the beryllium rotor is shown in Fig. 14 when l equal to 50 is applied. A bias current of 3.8A was
used while the steady state control current 6A was observed. The lowest power losses for all 8 c-
cores are calculated as

W total
steel ¼ 188:6 W; W total

beryllium ¼ 55:5 W: ð31Þ

4.3. Tracking example with direct linearization controller

Fig. 15 shows the response for the steel rotor with a 1.27� 10�4m, 150Hz, sinusoidal reference
input and 8A bias current. The plot clearly shows the nearly zero phase lag with reference to the
1.27� 10�4m steady state target. The steady state control current is seen to be 7.9A. The spring
and damping coefficients were varied to determine their effect on the performance and improve
controller design. The values used for Fig. 15 were K ¼ 175 880 000N/m and C ¼ 49 763N s/m,
yielding a natural frequency of 450Hz and equivalent damping ratio of z ¼ 0:40: In practice, the
damping ratio is degraded by the presence of other phase lags in the feedback path.
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Fig. 11. (a) Tracking error, (b) displacement, (c) current and (d) force with steel shaft and fuzzy logic controller: —,

input; *, response.
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Table 2

Performance in steel rotor case varying la

l F Max. tracking error (m) Phase lag (deg) Power loss (W)

10 1.27E-3 3.49E-5 6.75 188.6

50 6.35E-3 3.55E-5 8.10 190.4

100 1.27E-2 3.65E-5 8.10 193.1

500 6.35E-2 3.88E-5 8.10 215.2

1000 2.54E-1 4.12E-5 8.10 228.4

afixed Z ¼ 1:5 is applied in all cases.

Table 3

Performance in beryllium rotor case varying la

l F Max. tracking error (m) Phase lag (deg) Power loss (W)

50 6.35E-3 2.33E-5 2.70 55.5

100 1.27E-2 3.36E-5 E0 55.8

500 6.35E-2 3.73E-5 2.70 57.7

1000 1.27E-1 3.55E-5 E0 55.9

afixed Z ¼ 23:9 is applied in all cases.
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Fig. 16 shows the results for the beryllium rotor. As expected, a 1.27� 10�4m, 150Hz response
was obtained with much lower control currents and actuator forces. The bias current was set at
4A and the control current was 3.4A. The reduction in power losses is the most significant
benefit of the beryllium rotor. The total power losses for the 8 c-cores can be calculated from
Eq. (27) as

W total
steel ¼ 198 W; W total

beryllium ¼ 45 W: ð32Þ

The natural frequency, equivalent stiffness and damping for the beryllium rotor were 450Hz,
47 406 000N/m and 13 413N s/m, respectively.

4.4. Computational demand

Computation demand is an important criterion to evaluate the performance of the controllers.
Fig. 17 shows the flow chart for the computation procedure of each controller. In the cases of the
sliding mode and direct linearization, the conversion calculation using the non-linear magnetic
equation (3) is needed while the continuous tunings of proportional P and derivative D gains
using rules and membership functions are needed in the case of the fuzzy logic. For this example it
was found that the fuzzy logic requires the least computational effort to provide the command
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voltage. This may be somewhat misleading although for actual implementation on a digital signal
processor because of the time requirements to evaluate rules (Fig. 9).

4.5. Performance comparison

Table 4 illustrates the performance comparison for all types of controller and for the steel and
beryllium rotors.

5. Conclusions

This paper presents three non-linear control strategies applied to a thrust magnetic bearing to
track a sinusoidal reference command. A simple linear PD controller was inadequate to shake the
runner to the desired magnitude without becoming unstable, therefore non-linear controllers
based on fuzzy logic, sliding mode, and direct linearization were developed. It was demonstrated
that all three controllers could produce the desired magnitude of axial stroke for the rotor
1.27� 10�4m with little phase error at a frequency of 150Hz. The amplitude error did vary with
direct linearization providing the least error and sliding mode the largest error. The simulations
were carried out with two types of rotor materials: steel and beryllium alloy. The beryllium alloy
rotor is 3.7 times lighter than the steel rotor, which significantly reduced the total power losses
with all three types of controllers. Among the three non-linear control methods, direct-
linearization showed the least power consumption, phase lag, and the best tracking performance
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and fuzzy logic the least computation demand. Future work will involve implementation of the
three control strategies on a 4 hp fresh water pump and axial flow air compressor.
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Table 4

Controller performance comparison

Performance criteria Controller type

Fuzzy logic Sliding mode Direct linearization

Maximum axial Steel 1.27� 10�4 1.27� 10�4 1.27� 10�4

displacement (m) Beryllium 1.27� 10�4 1.27� 10�4 1.27� 10�4

Tracking error (m) Steel 1.80� 10�5 3.49� 10�5 1.25� 10�5

Beryllium 2.00� 10�5 2.33� 10�5 1.20� 10�5

Tracking error (%) Steel 14 27.7 10.9

Beryllium 16 19.7 10.5

Phase lag (degree) Steel 4 6.75 0

Beryllium 8 2.70 0

Total power losses (W) Steel 203 188.6 198

Beryllium 46 55.5 45

Computation demand Low High Medium
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