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Formalism for the rotation matrix of rotations about an arbitrary axis

Alan Palazzolo

Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606

(Received 23 April 1975; revised 18 June 1975)

In this paper a formalism is developed that enables one to write down by inspection the

matrix which represents the transformation between two coordinate systems, one of which is
rotated by an angle € about an arbitrary axis. Only the direction cosines of the rotation axis
and 0 need be known. It'is pointed out that this transformation is not discussed in the usual

treatments of classical mechanics.

INTRODUCTION

Traditional methods of representing coordinate
transformations are somewhat limited in their range of
applications. In standard treatment of rotations,*? the
student learns that he can multiply rotation matrices to
obtain a single matrix, which represents a transformation
that is equivalent to a series of rotations. Unfortunately,
the student’s feeling of competence in rotational trans-
formations can be turned to one of inadequacy on en-
countering certain examples of rotations about a non-
coordinate axis. He is then challenged with the formida-
ble task of calculating the angles of rotations about
coordinate axes, equivalent to the desired rotation. An
example that illustrates this difficulty is found in
Marion’s! text. His problem (problem 1-1) asks the student to
rotate a rectangular coordinate system by [20° about an
axis making equal angles with each of the coordinate axes
(the crystallographic 1,1,1 axis). As has been pointed out
by Kittel,? this problem is easily solved by noticing the
symmetry of the system: for a 120° rotation, ¢, becomes
é,', é, becomes ¢,', and &, becomes ¢,’, where the
primes denote the rotated coordinate frame. What would
have happened, though, if the rotation had been 119°?

On reexamining the usual formalism, it begins to
emerge that the source of the problem is that all rotation
matrices presented to the student are for rotations about
one of the coordinate axes and this problem simply
cannot be done with the use of such rotations. It should
be remarked at this point that an apparently reasonable
approach is first to use twq successive rotations to align
the e, axis with the 1,1,1 direction and then to rotate by

120° (or any other angle in the general case). Clearly, this:

method fails, since after these rotations the &, is along
the old 1,1,1 direction rather than the ¢, axis, as we
know from symmetry it must be.

The formalism for rotations about the coordinate axes
is seen to be essentially equivalent to the Euler angles, a
series of rotations about the coordinate axes of the initial
frame as well as intermediate frames. In order to solve
the problem of rotations about a noncoordinate axis,
another formalism is required. Such a formalism is de-
veloped in this paper, and it will be seen that it is possi-
ble to write down a matrix representing a rotation through
any angle about an arbitrary axis passing through the
origin. In the case that the rotation axis coincides with a
coordinate axis, the more usual rotation matrices are of
course reproduced.

Formally, if a prime denotes the rotated system, the
transformation between systems is

2 =2 %y,
i
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where

Ay =cos(xy’, x,),

with the notation (x;',x;) meaning the angle between unit
vectors in the x;' direction and in the x; direction. The
derivation of a formalism for the direction cosines A,
which follows, is founded on geometric arguments. The
formalism is shown to be consistent with the orthogonal-
ity condition

?Mixu =84

EXPLANATION OF FIG. 1

In Fig. 1, plane N is defined to be perpendicular to the
rotation axis, R, which is line OO. Plane N is at unit
distance from the origin. The orientation angles, «, B,
and <y describe the position of R relative to the original
frame, and are measured from the positive X " 5(2, and 5(3
axes, respectively. The quantities a, b, and ¢ represent
the distances along the X, X,, and X; axes to the in-
tersection of plane N with the original frame. The new
frame is represented by axes, X,', X,', and X', similarly,
the quantities a’, b', and ¢’ are the distances along these
axes to plane N. The angle 6 is the rotation angle about
R. The rotation axis passes through the origin and O,
which is the center of rotation in plane N. '

DEFINING LENGTHS IN FIG. 1

If ¢, is the unit vector along the rotation axis R,
é,=cosaé) +cosPé, + cosyéy.
Define (see Fig. 1) the vectors

Vg =aes - be,,
VCA=—aé1+Cé3,
VBC=bé2 - CéSo
- Since N is perpendicular to R,
Vape,=Vcye,=Vgee,=0.

Since O is in plane N,
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Fig. 1. Illustration of the basic parameters
involved in the derivation. Line OO is the
axis of rotation, R, and plane N is ortho-
gonal to R.

(OA -00)+ (00) =0,

where OO0 = &,. From these conditions, three equations
can be written and solved for a, b, and ¢. They are
(a8, — b&y) * (cos@ey +cosBe, + cosyes) =0, (1)
(— aéy + cé3) * (cosa, + cosBe, + cosyeé;) =0, (2)
[{a - cosa)e; - cosBe, — cosve;]

* (cosa e+ cospe, + cosyss) =0, (3)
or

acosa —=bcosfB=0,
—-acosa +ccosy=0,

acosa = cos’a +cos’B + cosly=1,
from which

a=seca, 4)
b =sech, - (5)
c=sec?. 6)

Note that

a=0a=0a’,
b=0b=00b',

c=0c=0c’.
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Note that segment lengths are preserved since points A4,
B, and C stay in plane N during rotation about R (see
Fig. 2).

From Fig. 2 and Eq. (4), note that

0a=(1+secta~2seca cosa)!/?

=tana
=0a'. (7
Likewise,.
00 =tanB = 0b’ (8)
and
Oc=tany=0c’. (9)

These segments remain in plane N during rotation about
R, so their lengths are preserved also.

e} Atapo)

Fig. 2. The unit vector &, is normal to plane N, which contains line

. segment OA.
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Fig. 3. In deriving the diagonal elements, triangles 044’ and OAA’ are
of key importance. Note that angle 1,, = &) Xy #6.

FORMALISM FOR THE DIAGONAL ELEMENTS
OF THE TRANSFORMATION MATRIX

From Fig. 3, consider triangle O4A4’. By the law of
cosines,

AA"?=2(0a) - 2(0a) cosd,
since Oa = Oa’. From Eq. (7),
AA” = 2tan’a - 2tan’a cosé.

Next, consider triangle OAA4’, for which (again from the

Fig. 4. After rotation through angle 8 about
00, the cosine of the angle between X,’ and
X, is equal to A;,. Note that lengths from ori-
gin to intersection of coordinate axes with
plane N are unaltered.
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law of cosines)

2(0a)* - (AA")?
2(0a)?

_2 sec’a — 2tan’a (1 - cosd)
2sec’a

CosNyy =

=1 -sina + sina cos @

2 s

=cos‘a +sin‘a cos®6.

By definition, cosny; = Ayy.

Constructing similar diagrams between the X, and X,'
axes and between the X3 and X3 axes, Ay and Agg are
found to be

ys = cos’B +sin’8 cosd
and

X33 = cos?y + sin’y cosé.

CALCULATION OF OFF-DIAGONAL ELEMENTS

From Fig. 4, consider triangle OAB. Using Egs. (4)
and (5) yields

AB=(0A%+0B?)!/2= (secla + sec?B)!/2,

Considering triangle OAB and using the law of cosines,
note that

0a®+0b% - AB?
20200

coS{yy=
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_tan’a + tan’8 - sec’a — sec’

2tana tanf
Using the trigonometric identity tan®y — sec®y = — 1
yields
cos &4 = = cota cotB
and

singy, = (1 - cot’a cot?B)!/2,
From triangle OA'B, we see

A'B=[0a’?+0b2 — 202’06 cos (&, = 6)]
=0a’?+0b? - 202’0 (cos ¢, cosd + sinf;, sind)
=tan’a +tan’8
- 2tana tanB [ - cota cotB cosb
+ (1= cot®a cot?B)!/ 2 siné]

=tan’a +tan’8 + 2 cosf

—2sind (tan’a tan?8 - 1)1/2,

Finally, consider triangle OA'B.

coSnyy = cos(Xy, X,) =2y,
—
_OA"4+0B:-A'B
- 20A'0OB

= [sec’a + sec?p ~ tan’a — tan’B
— 2 cosf+ 2 sinf(tan?a tan®8 ~ 1)1/?]

% (2 seca secB) .
Using the identity sec?y — tan®y = 1 yields

1 - cosf +sinf(tan®a tan®8 — 1)!/2
seca secf

127

=cosa cosP - cosa cosPB coso

+sind (sin’a sin’8 — cos?a cos?®B)!/2,

Using

sina sin®8 = (1 = cos2a)(1 -~ cos?B)
=1 - cos?B — cos®a + cos’a cos’B

yields

Xy5 = cosa cosP — cosa cosB coso

+8in@ (1 - cos?B - cos?a)/2.
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Since cos?a + cos?B + cos?y = 1,
Ay =cosa cosf — cosa cosP cosf + siné cosy.

Performing an identical geometric analysis to find the
remaining direction cosines, that is, cosn; = cosX;',X;),
the following results are obtained:

A1 = cos’a + sin’a cosé, (10)
A1 = cOS@ cospB — cosa cosB cosd +sinf cosy, (11)
Ai3 = COSQ COSY — cosa cosY cosf — sinb cosB, (12)
Ay1 = coSB cosa ~ cosPB cosa cosf - sinb cosy, (13)
Ay9 = cos’B +sin’B cosb, (14)
Xy3 = coSf cosY — cosP cosy cosf + sinb cosa, (15)
31 = COSY COSQ ~ COSY cosa cosf +sinb cospB, (16)
Ag; = cOSY cosB — cosY cosp cos@ —sinf cosa, (17)

33 = cos?y + sin®y cosé. (18)
These equations can be expressed more concisely as

A4 =COS0, COST,
+[€4,, 816 cos0,—~ coso, coso, cosd](1 ~ §,,)

+84,(sin’0, cos6), (19)

where k is a dummy index such that i =k =j, and
a=0,, B=0, and y = oz Also here §; = the
Kronecker delta symbol, and €;; = the Levi-Cevita
density. Here we take 6 as positive when measured
counterclockwise.

AN EXAMPLE:
PROBLEM 1-1

For the problem suggested earlier, namely, rotation by
120° about an axis making equal angles with the original
coordinate axes, o, =0, = 0z3=cos *(37Y%) and
# = 120°. From Eq. (19) we find A;; = A3 = Ay
=)\22=)\32=}\33=0and)\12=)\23=)\31= 1or

SOLUTION TO MARION’S

A o 1 ofx,
=10 0 1]}x,,
1 |1 0 o|x,

which is the obvious solution.

It is also quite simple to show that the trace of the
transformation matrix represented by Eq. (19) is
1 + 2 cos@, as Goldstein* shows that it must be.
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APPENDIX: PROOF OF THE ORTHOGONALITY CONDITION

To prove that Eq. (19) represents an orthogonal transformation, substitute the equation into the relation at the end of
the Introduction. The orthogonality condition now states

2N Ay = 22[cos0, cOSO,+ (€5 SINB €OST, ~ cOST, €OST, cOSH)
] ]
+8;,(cos8 sin’0; — ¢, sinf coso,+ oSG, coS0, c0s8)]
X[cosa, cosa, + (€, Sinf cosa,,— cosT, cosT, coso)

+6,,(cosf sin’s; —¢,,, sinb coso,, +coso, coso, coso)].

This expression can be expanded into 36 terms, of which
many combine to equal zero, or are exactly equal to zero.
The following types of terms arise in the expansion and
are evaluated in the following manner.

(i) A recurring term in the expansion is of the form

? COST,; COSTE, 1y«

This sum consists of two equal and opposite nonzero
terms, due to the reversal in signs of the Levi-Cevita
symbol. In the summation over j, j and k alternate be-
tween the two remaining non-i values, according to the
condition of Eq. (19) that i # k # j. This term is always
equal to zero. The same results hold if i is replaced by /
and k by m.
(ii) Another term in the expansion is of the form

?6,,6,,5,,,,, F(04, 0504 ecs )

The Kronecker delta symbol, 8, is nonzero if j is equal
to /, but in this case the Levi-Cevita symbol equals zero.
This term then remains zero in all cases.

(iii) The expression

€412 COST, +€;;, COST,,

occurs only once in the expansion. The first term is
generated under the condition that j =/ (because it is part
of a term multiplied by 8;; and summed over j). Then by
the condition on Eq. (19) k& cannot equal i or /. The sec-
ond term is generated under the condition that j =i (for
the same reason as the first term, with 8;; replaced by
8;). Similarly, m cannot be equal to i or /. Since all
indices are restricted to 1, 2, or 3, the only case that can
occur is k =m. In this case the expression is equal to
zero because €;; = — €.

By utilizing these results, the orthogonality condition
becomes

; Ay, =COSO, COST, + cosze(— c0S0, COSO,
+§)6”6,,(sin20, sin’0,+ coso, sin’o; coso,

+ €080 sin%0, oS0, + c0ST, COSO, cosza,))

+5in%0 27 C0S0, COST €4 141 ym » (A.1)
]
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Consider i =! for one case of the orthogonality condi-
tion. Then

23 x4\ = cos0; + cos?O(1 — cos?oy)
]

+sin%6 ;coszc,,emz .

The coefficient of sin?8 results because k =m for the sum
to be nonzero. The sum can be carried out over j and
produces the results

27 cos%0,¢,,,7 =25 cos?o, - cos’o, =1 ~ coso;.
7 ]

This follows because k alternates between both remaining
indices (not including i) during the summation. Then, in
the case i =1, the sum Z;\;2 = 1.

Next consider Eq. (A.1) for the case where i #1. The
term 3;8,8,(- + *) is zero by definition of the Kronecker
deltas and the condition i #/. The orthogonahty condi-
tion then reduces to

27 XAy = COSO, €OSO, + cos 26 - cosT, cosa,]
]

+sin?g[ !Zcoso,, COSO € 4 €1 ymle

Consider the coefficient of sin?@. Since i # [, j can only
assume one value to have a nonzero term in the sum-
mation. Also, to keep all terms of the Levi-Cevita
symbols distinct, k =/ and m =i. The coefficient then
becomes

2 €080, COSO 1€;,4€;,4= = COST, COST, 2s€y
J 7

= = C0S0, COST,.

By substituting this result into the orthogonality condi-
tion, the desired results are obtained; that is, Z;A A, = 0,
i #1.
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