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Fault Tolerance of Magnetic Bearings with Material
Path Reluctances and Fringing Factors

Uhn Joo Na and Alan B. Palazzolo

Abstract—An equivalent magnetic circuit of an eight-pole I. INTRODUCTION

heteropolar magnetic bearing with path reluctances is developed o ) ) ]

with nondimensional forms of flux, flux density, and magnetic RITICAL applications of magnetic bearings benefit from
force equations. The results show that fluxes and magnetic forces a fail-safe control approach. Without this, the many
are considerably reduced for the magnetic circuit with relatively advantages of a magnetic bearing over conventional bearings,

large path reluctances. A Lagrange multiplier optimization - ; . S
method is used to determine current distribution matrices for the such as il film or rolling element bearings, may be diminished.

magnetic bearing with large path reluctances. A cost function is Fault-tolerant control seeks to provide continued operation of
defined in a manner that represents load capacity in a specific di- the bearing when power amplifiers or coils suddenly fail. The

rection. Optimizing this cost function yields distribution matrices  strong coupling property of a heteropolar magnetic bearing and
calculated for certain combinations of five poles failed out of eight | aqefined remaining coil currents make it possible to produce

poles. Position stiffnesses and voltage stiffnesses are calculated, . . o .
for the fault-tolerant magnetic bearings. Fault-tolerant control desired force resultants in the andy-directions even when

of a horizontal rigid rotor supported on multiple-coil failed ~SOme coils fail.
magnetic bearings including large path reluctances is simulatedto ~ Lyonset al.[1], [14] used a three-control axis radial bearing

investigate the effect of path reluctances on imbalance response. structure with control algorithms for redundant force control
Index Terms—Fault tolerance, magnetic bearings, optimization, and rotor position measurement. Therefore, if one of the coils
path reluctances.

NOMENCLATURE
Pole face area.

fails, its control axis can be shut down while maintaining con-
trol. A bias current linearization method to accommodate the
fault tolerance of magnetic bearings was developed; so the re-
distribution matrix that linearizes control forces can be obtained
even if one or more coils fail [2], [3]. The fault tolerant magnetic

beat Saturation flux density. bearing system was demonstrated on a large flexible-rotor test
D Air gap energy matrix. rig [4]. Na and Palazzolo [5] developed an optimization method
g0 Nominal air gap distance. to realize fault-tolerant magnetic bearings; up to five poles failed
1 Current vector. out of an eight-pole heteropolar magnetic bearing.

Vb, Vexy Vey

Bias current.
Bias, z- andy-control voltages.

Fault-tolerant schemes seek to provide uninterrupted control
and high load capacity. Many researchers have investigated the

Ve Input voltage vector. load capacity of a magnetic bearing. Masétral. [6] presented

K Current map matrix. an expression that describes a maximum bearing load. Bornstein
q Number of active poles. [7] derived equations to express the dynamic load capacity. Rao
n Number of coil turns. et al.[8] shows that the stiffness capacity of a magnetic bearing
R Reluctance matrix. can be described as a function of the ratio of dynamic and static
T Distribution matrix. loads.

T,y Rotor displacements. Material path reluctances are usually neglected for the anal-
K Power amplifier gain. ysis of a small magnetic bearing. However, path reluctances can
o Leakage and fringing factor. affect the magnetic forces for a large magnetic bearing or a mag-
¢ Magpnetic flux. netic bearing with low permeability material. The main con-
A Lagrange multiplier. tribution of the present work is a determination of the current
¢ Sensor sensitivity. distribution matrix, which linearizes a fault-tolerant heteropolar
o Permeability of air. magnetic bearing with large material path reluctances, and the
Hrel Relative permeability. resulting load capacity.

0 Pole face angle.
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The gap reluctance matrix is

rgr —g2 O 0 0 0 0 0
0 § —-g3 O 0 0 0 0
0 0 §3 —gsa O 0 0 0
2 - |0 0 0 G —§s O 0 0
9710 0 0 0 45 —g¢ O 0
0 0 0 0 0 g —4r O
0 0 0 0 0 0  §r —is
L1 1 1 1 1 1 1 1
(6)
The material path reluctance matrix is defined as
R, = aR, (7)

where, as shown in the equation at the bottom of the next page.
The coil turn matrix is

1 -1 0 - 0
0 1 -1 0o -
0 0 1 -1 0

N=|. . . .. ol - (8)
. . . N 0 . . 0 1 -1
Fig. 1. Eight-pole heteropolar equivalent magnetic circuit. 0 0 ) .0 0

fringing, and eddy current effects. Finite material path pefhe magnetic flux vector is then described as

meability may be included in the magnetic force equations to

better predict the current-force relation [9], [10]. Fig. 1 shows &= poAn BRINT. (9)
the equivalent magnetic circuit of an eight-pole heteropolar go

magnetl_c bearing, including material .path reluctances. . The flux density in the air gap may be substantially reduced
. Material path reIuctan(;es for back iron, pole leg, and Joumabe to the leakage and fringing effects. Allaire [11] showed that
iron segments are described as the flux leakage and fringing effects in a thrust magnetic bearing

l; ) can be approximated by a simple scaling factor. The flux density
el 0 A; i=h B, J @) vector in the air gap can be scaled by the leakage and fringing

) . factoro
where the areas of the poles, the back iron, and the journal iron

are expressed in terms of the pole face area, sudhpas pp A, B= 2" o (10)
Ap = ppd, andA; = p;A. The length of the pole legs and 9o

the length of the back iron and the journal iron between tr\lﬁhere

two poles in terms of the nominal gap distance lare= kgo,

lp = kkpgo, andl; = kk;go. The reluctances in the air gap V=hIN

are described as

R; =

R gof}j. @ The magnetic forces along thedirection is given as
T oA oD
. . . . F,=-B"——B (11)
The nondimensional air gap equations are Ay
gj =1—&cosb; —jsind, (3)  whereD = goAD/(2110) andD = diag(g; ). ¢ is eitherz ory.

The current-force relation, including material path reluctances

where the rotor displacements in nondimensional formiare and leakage and fringing effects, is then described as

x/goandj = y/go. Apply Ampere’s loop law, Gauss’s law, and

the conservation law of fluxes of the magnetic circuit to obtain o2 An?
a matrix relation F, = T2 ror (12)
0
go 7 S

—— R® =nNI. 4

[0 A 4 where
The reluctances in the magnetic bearing can be partitioned into Q= VT )] v
the gap reluctance matrix and the material path reluctance ma- o o¢

trix
X The empirically determined value af for a typical ho-
R=%,+R,. (5) mopolar magnetic bearing ranges from 0.8 to 0.9. The currents
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distributed to the bearing are related to the control voltageces for an unfailed eight-pole heteropolar magnetic bearing

vector with the distribution matrif” [2], [5]. are
- T T -
1 cos (—) sin (—)
I=rTV, (13) 8 8
3) =)
-1 —cos|— —sin | —
where 8 8
5w . 5w
T 1 cos <—> sin <—>
T= LTbTwTyJ P V;: = [Ub, Vexy Ucy] - 3 8
1 Tw . T
The bias flux density should be set equabig /2 to obtain - —ceos| o —sin | —
maximum magnetic forces at the point of magnetic material sat- T = 9r 9r
uration. The bias voltage for obtaining the maximum magnetic 1 cos <§> sin <§>

force is then set as

vy = gObsat (14)

L () o
2K p0m ‘VT;,LO 1 cos <13?7r> sin <
(%) —=(

Magnetic force along the-direction with the selected, and a

nondimensional parametar, is L 8 8 /|
ro1 1 07
o212 po An’v? -1 0 -1
F,=—""——""Yh, 15
v 293 ¢ (15) 1 0 1
-1 1 0
where = 1 -1 0
-1 0 1
. 0D . . 1 0 -1
_ TrTy;T
he==V_ 17V 8—¢VTVZH L-1 -1 04
v Ver  Vey r Eight independent currents are distributed to the bearing via
e =L v v | the distribution matrix of’;, whereas four independent currents

are distributed vid». The row number for these matrices cor-
The magnetic force along the-direction becomes a max- responds to the pole number in Fig. 1. The typical distribution
imum whenv,, is equal tas,. Two examples of distribution ma- matrix used in a C core heteropolar magnetic bearing control

k
o=
Hrel PP
- 6 5 4 3 2 -
P A A | B/ N/ B B
8 8 8 8 8 8 8
2 5 4 3 2
AU B B U BN /B B B
8 8 8 8 8 8 8
2 3 4 3 2
U 2 B A 3 o m
8 8 8 8 8 8 8
2 3 4 3 2
U 2 S U RPN SR/ R B
R,=| 8 8 8 8 8 8 8
2 3 4 5 2
U 2 3n g o
8 8 8 8 8 8 8
2 3 4 5 6
U 2 3n 4n /N B B
8 8 8 8 8 8 8
n 2n 31 4 1 i 14+
8 8 8 8 8 8 8
L O 0 0 0 0 0 0 0

_ pr(psks + pBky)
PBPI
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is T». Only two controller outputs are needed for the distribu > T
tion matrix of 75, whereas eight independent controller output
are needed for the distribution matrix’6f. The magnetic force 8'+ i
generated by currents distributed with or 75 is completely sl e
decoupled. The control voltage of, does not affect the mag- |, *, o
netic force along the:-direction. The parametdr,, with the T . A&‘Aé‘A ;
distribution matrix ofZ; in case of no path reluctances at the R, AAAAAA‘
bearing center positions(= y = 0) andv., = v is equal to &5 P 5 2
eight. Thus, the maximum magnetic force of the eight-pole he T AAAAA
eropolar bearing calculated with no material path reluctances & : *** *++ AAAu‘A
simplified as e a8
55 Woan x. " 4
max 40’2N0A712ig AAAAA{ *** +++
FgC _ F;nax _ T’ (16) 5 sv<!<1<1<1<1;<1<1'<1<1<1<1<1<1 quagi«&giqqqqq14444444«“«44
0 PR s T S T A T A AN S X U PR R
wherei, = rw,. A distribution matrix for the four-pole het- e, T,
eropolar magnetic bearing is o Ty e 1
**** +++
* +
1 1 0 35 : *****:4‘ 4
-1 0 -1 :
T= 1 -1 01" 30 0.05 of1 0.15 ofz 0.25 0.3
1 0 1 ‘a

Similarly, the maximum magnetic force of the four-pole hetEiQFZD-mM;Ximl%f(? fgﬁcev biéshV0|t;199' é';@i V;VSUSN: <@z Fpex(Ty)/100,
eropolar bearing without path reluctance is calculated as B F2(T2)/100, At vw, i by (T), #: b (T2).

Partial differentiations of/ can be rewritten as a nondimen-

2 2,2
Fr =F = 20“;#. (17) sional form
0 U oZugAn?
The eight-pole heteropolar magnetic bearing used in this % - TU@ (9)

analysis hagy,(0.000508 m),A(0.000602 ), I»(0.03 m),
{5(0.065 m),77(0.021 m), n(50), »r(0.985), p5(0.98), and where
ps(0.985). The parametebs,;, o, andx are assumed to be 1.2 ) 0D
Tesla, 0.85, and 1, respectively. The maximum magnetic forces Uy, = -V 90 V.
and corresponding bias voltages ang with 77 andZ3 with v
respect tav are shown in Fig. 2. Similarly

The maximum force does not decrease muchxas in-
o*U _ oo An?

creased; however, the bias voltage needed for the maximum  Up (20)
force increases rapidly. Therefore, saturation of magnetic FpOw 90
bearing will occur at a higher currefif,, = 2¢ asa is  \where
increased. The maximum magnetic force calculated Withs . N T
just 92% of the maximum magnetic force calculated vith U, =—V ap oV
whereas the same current inputs are required. This shows that v o \ 9¢
the control with eight independent control currents maximizes oV 8k . .
the magnetic force with lower risk of flux saturation. % = —R7! % RN,
¢ andw both represent- or ¢-direction. The nonlinear mag-
IIl. L INEARIZED FORCES netic forces with path reluctances can also be linearized about

Linearized forces can be determined for a heteropolar mdfe bearing center position and the zero control voltages by
netic bearing, including path reluctances. Nonlinear magnetging Taylor series expansion

forces are defined as Fp = —Kppat — Kpoyy + KogoVer + KuzyVey  (21)
7 OU Fy~—Kpyor — Kpyyyy + Koyovew + Koyyvey  (22)
Fo=1 Do 4 (18) where position stiffnesses and voltage stiffnesses are defined as

aFw 2,.2 A 2,2 R

where Kpop =— =_2r Nog G T Vw0l (23)
dyp 90
2 2 o aFw 2.2 A 2 R

U= M VTDV Kuu.(,c = SN T(,TUL«.OT<,9 (24)

2g0 ) avct,c B g(%



NA AND PALAZZOLO: FAULT TOLERANCE OF MAGNETIC BEARINGS 3943

The position stiffnesses and voltage stiffnesses are calcula 4x1¢

with the distribution matrices df; andZ; at the center position :
of the bearing. No cross-coupled position and voltage stiffness
exist because the distribution matric€s and 7> completely . : e
decouple the magnetic forces. Linearized forces @itlndZ; o
are then reduced as *****
#*
Fo=—Kpr + Kyver (25) b o **
#*
Iy~ —Kpy+ Kyvey. (26) ****
%
Fig. 3 shows tha#(,, and K, calculated with the distribution o
matrices?; and7% are reduced as is increased. The values of ! o ]
. *
K, K., andv, with 17 ato = 0 are—1358000 N/m, 142.2 *,s*
N/V, and 4.851, respectively. <
*
-1.2 *
»*
IV. DETERMINATION OF THE DISTRIBUTION MATRICES ***
*
It is shown that large path reluctances in a heteropolar ma <
netic bearing have a considerable influence on the flux disti 3 ***
bution. The coil current distribution of bias currentscontrol 1*
currents, ang-control currents must be redefined in the case ¢
single or multiple coil failures to produce the same force resu 4 0.05 0.1 0.15 02 0.25 03
tants. If some coils fail, the reduced current vector is related | a
defining a matrixk’
(@
I=KI (27) 10
where the reduced current vector is defined as
- ~ +
I=1v. (28) "I+,
+
The reduced distribution matrix is . T,
~ ~ ~ ~ ¥ by [ —
7= [Tb, 7., Ty} 29) e T
* +
where ", s,
2 T S T 120 * Ty B
Tb = [tl, tg, . tq] 5 Tm = [tq+1, tq+2, ey tgq] *** +++
A *
Ty = [tags1, taga, - tag]” - . +++++
To yield the linearized forces that are described as e T L
* +
Fl, = ey (30) e, e
* i
The necessary conditions are [2], [5] 190 '*-*** iy
~ ~ * +
176G~ M, =0, (31)
90 *
where ) e,
An? o OD {
G, =127 VTS VE, | _ |
90 i 85 0.05 01 0.15 02 0.25 03
0 05 0 0 0 0.5 a
M,=105 0 0f, My=|0 0 0 ®)
0 0 O 05 0 O

Lo L C . __Fig. 3. Position stiff forT, andT%). (b) Voltage stiff
The optimization method for obtaining distribution matnce{sf: Ix"v((Ti)), gs}l—cz?;;))rfesﬂp) (same forT’, andT;). (b) Veltage sifiness

using Lagrange multipliers can be applied on a heteropolar mag-

?etlg _bearlng, mc'tjhd'??hpagh rlecljuctances. Af(;;IOSt (fjunct_lton IS ??’he cost function then represents the magnetic force along the
inedinamanner that the ucidean norm otfiux density vec (g)f-direction. Twelve equality constraint equations are also de-
B is weighted with a diagonal matri®

rived from (31)

J(T) = B(T)* PB(T). 32 A .
o (_ ) =B(T) _( ) (32) h(F) =77, 3, = 0,
The weighting matrixP can be assigned so that the load ca- - AT
o S L : ho(T) =T, G, T, — 0.5 =0,
pacity in a specific direction is increased. The weighting matrix N o
P is selected as ha(1) =1, Go1y =0,
ho(T) =TYG, T, =0,
p=0 (33) RO
ay hS(T) — 4z Ga: y — 07
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hG(T) :T G, T =0, 600} \\A T —
h7(T) :T G, T -0, 400 // \ 400 /\\ ..... ]
hg(T) :T G T =0, Azao - 200 /
haolT) =776, T - o, w N o] N
hll(T) IT G -6800 \* -600 :
hio (T) :TfGyTy =0. (34) -500 0 500 -500 0 500
The Lagrange multiplier method can be applied to the bas
problem to solve fofl” that satisfies (31) Define 600 sool
o P 400
LTy = BOTPB(T)T + Z Aih (T @5 ., A o M
The partial differentiation of (35) Wlth respecttoand); leads  * 20
to 3¢ + 12 nonlinear algebraic equations to solve fpandA; 0 o
oL . ;
wi =" =0, =12 ..., 3q @6 . o0
atz -500 Fx?N) 500 -500 : x:?N) 500
T,U(j+3q) IhJ(T) = 0, J = 1, 2, ey 12. (37)
Fig. 4. Load capacity of the fault-tolerant magnetic bearing with path

A vector form of3¢ + 12 nonlinear algebraic equations is

w1 (t, )\) ]
UJQ(t, )\)

-0
0

w(3q+11)(t7 )\)
—w(3q+12)(t7 A)

0
L0

(38)

V. OPTIMAL SOLUTIONS FOR THEDISTRIBUTION MATRICES

reluctances for 1-3rd coils failed (upper left), 1-2—3rd coils failed (upper
right), 5-6-7-8th coils failed (bottom left), and 2-4-6-7-8th coils failed

(bottom right).

r2.94444

Tse78 =

Distribution matrices for a heteropolar magnetic bearing, in-
cluding path reluctances, are obtained by solving the system of
nonlinear algebraic equations shown in (38). A least-squares
iterative method (MATLAB) was used to solve the system of
nonlinear algebraic equations, which yields multiple solutions.

Various initial guesses a@f and; may be tested to obtain con-
verged solutions. The parameter,, equals 500 for calcula-

Tose78 =

tion of the distribution matrices. The distribution matrices for
1-3rd coils failed, 1-2—-3rd coils failed, 5th—8th coils failed, and

2—-4-6-7-8th coils failed magnetic bearings are calculated age 5o|ytions for a multiple-coils-failed bearing are well con-

verged; so the solutions satisfy (31) with tolerable errors. For

1.83753
1.83754
2.94444

0

0

0

0

8.06183
0
3.71891
0
8.06183
0
0
0

0.0770
—0.1083
0.1083
—0.0770

0

0

0

0

0.0775

0
—0.0363

0
0.0402

0

0

0

—1.25607
—1.3101
—1.3101
—1.2560
0 ?
0
0
0

—0.23367
0
0.0418
0
—0.2491
0
0
0

0
—0.00025
0

?

0.5
0

0.00013

The load capacities of a heteropolar magnetic bearing in-
cluding path reluctances with multiple poles failed, are calcu-

The outer locus shows the unfailed bearing load capacity,
whereas the inner locus shows the failed bearing load capac-

r 0 0 0 1
0.38794  0.13363  0.40059 example Tx¢75 satisfies (31) with minimal error, such as
0 0 0 "0 0.5
0.41082 —0.26587  0.37758 STy _
Bis=1_006265 026700 041101 rma.T= 0(')‘) _00802,
0.08070  0.18900  0.29271 L ek
0.48197  0.15528 —0.15589 [0 0
L 047281 0.52258 —0.01879 17G, 7= | 0 0.00017
-0 0 0 - 0.5 0
0 0 0
0 0 0
1.579990 —0.0176 0.1711 lated for the calculated distribution matricesiag, 7123, Ts67s,
Tas= | 5612027 02123 02221 | ° and7Zb4 678 and shown in Fig. 4.
0.495525  0.1632 0.1814
1.799341  0.1880 0.0165
[1.145192  0.2137 0.1547

ities for eight directions. The position stiffnesses and voltage
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TABLEI X1ol T T T T T T T
oF 4
Ty Ty Ty Tyie7
v, 19.53 443 5 1.09 b 4
K, (N/m) -787681 439170  -1221422  -580702
K, (N/m) 180972 197822  -0.09 -183119 &b i
K, (N/m) 180972 197822  -0.09 -183119
K, (N/m) -668967 431316  -46624 -214463 -6F .
K, (N/Voly 1953 443 5 1.09 £
K, (NVol) 0 0 0 0 § o 1
K, (NYolty 0 0 0 0 &
K, (NNolty 1953 443 5 1.09 or l
A2t E
. Unbalance
Gravity j f Disturbances 4 " 1
— 16t E
TM{ M8 |77 ¢ e
H* |V I FA Iz -8 6 4 2 ) 2 4 6 )
" ? | Rotor displacement(m) x10°
Ver Dyna
-mics Fig. 6. Orbit plot for normal operation to the 5-6—7-8th poles failed operation.
T2 Ul & MB | Ff =2 |¢
HE vg I? F? yB
| v ’ current 4 current 3 cument 2
i 10 7 10 - 10
g 5 5
Fig. 5. Schematic of control system. e 0 °
stiffnesses for the distribution matrices @fs, 7123, Ts67s, s o1 2 o
and T»4 678 are also calculated at the center position of th _ ouments

bearing. The voltage stiffnesses are completely decoupled 1.
valid 7. However, some cross-coupled position stiffnesses fc&
failed bearings exist due to unevenly distributed flux densitie:g °
The calculated position stiffness and voltage stiffness and bi § -5

voltage gain are shown in Table I. The voltage stiffnedsgs, -10 A0 b
. . 0 0.1 0.2 0 0.1 0.2
and K, for a va_lldr should pe equal to the bias _volta_gga curent & current 7 cuent 8
because the distribution matfixis calculated for the linearized 10 10 10
forces shown in (30). E 5 5 5
< 0 0 0
VI. CONTROL SYSTEM DESIGN AND SIMULATIONS § 5 5} 5
A fault-tolerant control system of a horizontal rigid rotor sup- % o =, - o, O S
ported on magnetic bearings is constructed. The schematic time(sec) time(sec) time(sec)

the fault-tolerant control system is shown in Fig. 5. A sym-
metric, horizontal rigid rotor has mass of 10.7 kg, polar momehig- 7- Current inputs for normal operation to the 5-6-7-8th poles failed
of inertia of 0.008 kg, transverse moment of inertia about thaPeration.
mass centor of 0.36 kgimand bearing locations of 0.22 m on
each side of the mass center. Unbalances of eccentricity of 2.3 he following system dynamics simulation illustrates the
E-6 are applied on two bearing locations with a relative phat@ansient response of a rotor supported by magnetic bearings
angle 90. during a coil failure event. A distribution matrix @f; is used

The sensor sensitivity is 7874 V/m. The power amplifier to distribute currents to the unfailed bearings. The parameters
gainx is 1 A/V. The control law was designed with simple PD¥,, K, andwv, with 77 at« = 0.1181 (w1 = 500) for
control and low-pass filters. The closed loop bearing stiffnessfailed bearings are1 152 000 N/m, 116.78 N/V, and 5.836,
and damping can be adjusted by tuning the PD controller gainsspectively. The designed PD control gaisand k4 for the
k, and kg [12]. Rotor critical speeds and their correspondingnfailed bearings are-4.6 and—0.02, respectively. A new
dampings can be designed by tuning active bearing propertigstribution matrix and control gains should be provided to
[13]. produce desired force resultants when some coils in a magnetic
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in the calculation of distribution matrices for fault-tolerant con-
trol. The control with eight independent control currents maxi-
mizes the magnetic force but requires more controller outputs.
A Lagrange multiplier optimization method is used to determine
distribution matrices for the magnetic bearing, including large
path reluctances. The distribution matrices are calculated up to
a certain combination of five poles failed out of eight poles.
Nondimensional forms of the position stiffnesses and voltage
stiffnesses are calculated for the fault-tolerant magnetic bear-
ings. Simulations show that distribution matrices calculated for
a magnetic bearing with large material reluctances can still pro-

3946
faax denaity 4 ax density 3 e donaity 2
1 1 1 1
M ....................... 4 o.s
3 0 °
05 05
-4 -1
(] 01 %2 o
hax denslty §
1
08
g o m )
05 05
- 4
0 0.1 02 o 0.4 02
fax denaity 6 fux denstty 7 fusx density 8
1 1 1
0s 0s 0s
! P A P owm
05 95 B 05 5
- - -
0 01 02 0 01 2 0 0.1 02
time(sec) time(vec) time(sec)

vide good control.
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