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Electromechanical Modeling 
of Hybrid Piezohydraulic 
Actuator System for Active 
Vibration Control 
Electromechanical modeling of a hybrid piezohydraulic actuator system for active 
vibration control was developed. The transfer function of piezoelectric actuator was 
derived from the electromechanical potential energy law. This transfer function repre­
sents the dynamic relationship between input electric voltage and piezoelectric actua­
tor displacement. The hydraulic actuator was characterized by impedance matching 
in which its transfer functions were experimentally determined. The transfer functions 
were transformed into a state-space representation, which is easily assembled into 
an active vibration control (AVC) closed-loop simulation. Good correlation of simu­
lation and test was achieved for the hybrid system. A closed-loop dynamic simulation 
for imbalance response with/without AVC of a spinning rotor test rig at NASA Lewis 
was performed and showed excellent agreement with test results. The simulation 
couples the piezoelectric, hydraulic, and structural (rotor) components. 

Introduction 
Piezoelectricity was discovered by Pierre and Jacques Curie 

in the 1880's. Since then, it has been applied in precision me­
chanics, mechanical engineering, optics and measuring technol­
ogy, medicine, and microelectronics. Piezoelectricity is the 
property of a crystalline material that is able to produce changes 
in its dimensions in the direction of an electric field which 
is parallel to the material polarization direction. Rotorbearing 
systems occur in the machinery, aerospace, power utility and 
petrochemical industries. Rotorbearing systems usually operate 
at a wide range of rotating speeds to meet needs of high effi­
ciency and power output. Vibrations are encountered when ro­
tating speeds are close to critical speeds and may be suppressed 
by adding damping, shifting critical speeds or reducing the im­
balance force by passive or active means. An active vibration 
control system consists mainly of sensors, controller (analog or 
digital), power amplifiers, and actuators which suppress the 
vibration by counteracting the sensed vibrations. Piezoelectric 
actuator and electromagnetic shakers are used as actuators due 
to their high frequency band, large stroke, and large force out­
put. 

Palazzolo et al. (1991) successfully applied a piezoelectric 
actuator to suppress imbalance, subsynchronus, and transient 
vibration on a rotor test rig. Desirable features for actuators in 
rotating systems include: compactness, high force and stroke 
capability, and high and low temperature operation. These re­
quirements exist because some rotor systems such as jet and 
rocket engines have Umited space. Tang and Palazzolo (1993a) 
developed a combined piezohydraulic actuator system and suc­
cessfully applied it to active vibration control of a rotor test rig 
at NASA Lewis. Figure 1 shows the configuration of this hybrid 
actuator. This consists of an output piston driven remotely by 
a piezoelectric actuator. The hydraulic fluid in the transmission 
tube was a liquid plastic, in Tang and Palazzolo (1993a), that 
was specially formulated to reduce leakage. Dual " O " ring 
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seal are also included on each piston for this purpose. An elec­
tromechanical model for this hybrid system is required for 
closed-loop dynamic simulation with active vibration control. 

The piezoelectric model is based on a one-dimensional' 'Ma­
son" equivalent circuit (Kossoff, 1966) with electric parame­
ters (resistance, inductance, and capacitance). The basic input 
elements of this model are taken from measured data. Many 
authors have studied piezoelectric structure vibration models. 
Holland and Eer Nisse (1968) used the Rayleigh-Ritz method 
for treatment of mechanically free parallelepipedic rectangle 
with the main surface fully covered with electrodes. Allik 
(1974), and Tomikawa (1978) applied the three-dimensional 
finite element method to low frequency transducer computations 
and resonators. However, no complex transfer functions were 
given for expressing the electromechanical relationship between 
input voltage and output expansion. Lin (1990) used an ideal 
model which has a piezoelectricity and payload stiffness, and 
produces a tip displacement proportional to input voltage. This 
model is easy to assemble in the closed-loop AVC simulations; 
however, it is essentially a static model. 

This paper presents a new modeling method for the piezohy­
draulic actuator system. A simplified version neglecting piezo­
electric stack dynamic was presented in Tang, and Palazzolo 
(1993b) for imbalance response simulation with active vibra­
tion control (AVC). The current model is based on a transfer 
function of the piezoelectric actuator as derived from the poten­
tial energy law (Cade, 1946). This transfer function represents 
the relationship between input electric voltage and piezoelectric 
actuator displacement. A transfer function based approach is 
also employed for modeling the hydraulic actuator. This model 
employs experimentally derived frequency response functions. 

Energy Equation for Piezoelectric Crystals 

Neglecting thermal effects, the energy per unit volume of a 
piezoelectric material is (Cade, 1946); 

A = i (7^S V + i E ^ C E - \ ETDo-2 ^ ' - ' ^ 2 

Equation (1) may be rewritten as 

(1) 

(2) 
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Fig. 1 Piezohydraulic actuator system 
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Fig. 3 Piezoelectric ceramic one-dimensionai expansion under externai 
voltage 

Fig. 2 Arbitrary piezoelectric crystal 

where K is the mechanical energy density 

V„ = \ o-^S V 

W„ is the electric energy density 

W„ = \ E ^ C E 

Z„ is the electromechanical energy density 

7^= -\ ElJor 

(3) 

(4) 

(5) 

Piezoelectric Ceramic Total Energy 

A piezoelectric actuator consists of numerous individual 
polycrystalline ceramic elements instead of natural piezoelectric 
crystals connected electrically in series/parallel. Figure 2 shows 

an arbitrary shape piezoelectric crystal. The total energy of this 
crystal according to Eq. (1) is 

Z,,idQ (6) 

Figure 3 shows the ilh thin piezoelectric ceramic plate or 
disk in the overall stack. The ceramic plate or disk lies between 
two electrode surfaces, one of which is connected to the control 
voltage and the other to ground. The piezoelectric ceramic ele­
ment, which has an electric field in its polarization direction 
expands in the x direction under external voltage Vj. By 
applying the following equations 

dill = Aidx, dm, = piA/dx, 

^ ,, -, f , f, s dui{x,t) 
ffi — EAiUiix, t) where Ui{x, t) = dx 

(7) 

The elastic energy can be expressed by: 

where 

V„, 

EAiAi(u'i{x, t)Ydx 

EAi{u'ix,t)Y 

(8) 

(9) 

The electric energy for one piezoelectric plate is (Crandall, 
1990); 

W„ = 1 ql 1 ql 
2 Ciidoi + Ui(Xi + dot, t)) 2 Ci(doi) 

(do, > M,U + doi, t)) (10) 

N o m e n c l a t u r e 

a- = stress vector ( 6 x 1 ) 
E = electrical field vector ( 6 x 1 ) 
Py = energy density 
S^ = elastic compliance vector ( 6 x 1 ) 
C = dielectric susceptibility vector 

( 6 X 1) 
D = piezoelectric strain coefficient ma­

trix (6 X 6) 
EAI = elastic modulus of piezoelectric ce­

ramic plate 

A, = cross-sectional area of the pi­
ezoelectricity ceramic plate 

Ui(x, t) = deflection in polarization di­
rection 

qi = electric charge 
(̂ 33 = piezoelectric charge constant 

in polarization direction 
p, = mass density of ceramic plate 

doi = thickness of ceramic plate 

Ciidoi) = capacitance, which is a func­
tion of the thickness of a ce­
ramic plate 

Ei = electric field strength 
$, (x) = ;th mode shape 
Wi(t) = ith response function 

6 = piezoelectric static expansion 
(m) 

n = number of piezoelectric ce­
ramic disks or plates 

V = external DC voltage (V) 
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Fig. 4 "Free tip" static expansion of a stacked piezoelectric actuator 

and the electromechanical energy is 

Jcii 

= -di3,E,EAAi \ u'i(x,t)dn (11) 

By applying the following electric field strength relationship 

E, = 
Ci do, 

Eq. (11) can be written as 

Zfi = —dy. E^.Ai I u'iix, 

(12) 

t)dn (13) 
c, doi 

and the kinetic energy for this piezoelectric ceramic element is 

T; = 5 I dniiUJix, 0 = i I piAiU^ix, t)dx (14) 
Jtt: Jx, 

Piezoelectric Actuator (Stacked Model) 

The piezoelectric ceramic elements are assembled into a 
stacked form for a positioning actuator as shown in Fig. 4. This 
figure illustrates the free tip expansion of the stack subjected 
to a static voltage. The active part of positioning element con­
sists of a stack of thin ceramic disks sandwiched between the 
metallic electrodes which are connected to external control volt­
age. Larger linear expansion can be achieved by making the 
disk thinner for a given operating voltage (the thinner the disk, 
the higher the field strength). Figure 5 shows a dynamic model 
of the piezoelectric positioning actuator which consists of hun­
dreds of thin ceramic disks or plates. For this stack KH is the 
external equivalent stiffness, which includes the payload spring 
stiffness and the external stiffness, m is the total mass of the 
piezoelectric crystals, m^ represents the mass of the actuator tip, 
CH represents the equivalent external damping, and + or -

Fig. 6 The assumed mode shapes for axial deflection of the Plezo Stack 

indicates the direction of external voltage on the ceramic. The 
following assumptions are made for simplicity; geometry, exter­
nal voltage, physical properties (mass density, elastic modulus), 
electrical properties (resistance, capacitance, inductance) are 
the same and constant for all the ceramic disks or plates. Hence; 

Ai = A, dia = do, EAI = £/!> 

Ui(x, t) = u(x, t) = M, d-ii. = dss. PI = p (15) 

According to Eq. (8) , the elastic energy of the ith ceramic disk 
or plate is 

Vn = i E^A (u'iix, 
Ju-\)do 

t)ydx (16) 

and the total elastic energy of the entire piezoelectric actuator 
is: 

Vr=i Vr, = ^ £AA S f ° (uKx, t)Ydx 
,•=1 i = i ' ' O ' - D r f o 

= 5 EAA (U'(X, t))^dx 
Jo 

For each ceramic disk, the electrical energy is 

+ 

1 2 3 

V 

+ 

4 i 

+ 

^ E A . A ^ r ^ 

ni=pAndo 
In 

-H 

1 n 
KH k 

Tip — ^ 

2 dido) 

and the total electric energy is then 

" 1 " /7? 

2 ,=j Ci (do) 

(17) 

(18) 

(19) 

Fig. 5 Model of piezoelectric actuator for dynamic analysis with tip 
stiffness 

The coupling energy (electromechanical energy equation) Eq. 
(11) for each ceramic disk can be written as 

ZTi =-di^.-^E^Ai \ u'iix, t)dx (20) 
' Cido ' J (i-l)do 
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OEG ^ 

H 

and the virtual work is 
n 

SW = -{F„{t)6u„{x, t) + CHU„(X, 0<5"«)L=„rfo + X ^',(5?, 

IIFI m AUG 

= (-KH - CHU(X, t))Su(X, f)l;t=„rfo + S '^l^'ii 

where the electrical virtual work is defined by 

i V,6q, 

(27) 

(28) 

Mode Approximation of the Piezoelectric Actuator 
The longitudinal vibration of a piezoelectric actuator can be 

approximated by the finite mode superposition method. The 
response of vibration at location x can be expressed as 

u(x, r) = Z $,(jc)w,(0 (29) 

For simplicity, two modes were assumed. The response of vibra­
tion at any location 'x' can then be represented 

U{X, t) = $ i ( x ) W i ( 0 + ^2{x)W2(t) (30) 
where two approximate modes are 

^i{x) = sin • $2(^) = sin 
"ilTX 

(31) 

FREQUENCY (HZ) tf 2i(|g HZ [WL\ 

Fig. 7 Tfie measured free tip transfer function of tfie piezoelectric 
actuator 

By summing Eq. ( 2 0 ) , the total coupling energy is 

ZT = -CI^^EAA i - ^ f ° u'{x,t)dx (21) 

the kinetic energy of a ceramic disk or plate from Eq. (13) is 

2nd a 2nd a 
Figures 6(a, b,c) show the first two mode shapes. Differenti­

ating Eq. (30) with respect to time t, gives 
u{x, t) = $i(x)H'i(0 -I- $2(^)^2(0 (32) 

and differentiating Eq. (30) with respect to x, gives 

u'{x, t) = # ; ( x ) w , ( 0 + $^(x)w2(f) (33) 
By substituting Eqs. (32), and (33) into Eqs. (17), (21), (25), 
and (27), the energy equations for the stacked piezoelectric 
actuator model can be written as: 
Potential energy 

Vr = \ ' ^ K,{w\{t) + 9wl{t)) 
L o 

where 

K, = 
EAA 

ndo 

(34) 

(35) 

(22) 
Mo 

Ti = 5 p,A,«?(x, t)dx i = 0, . . . , n ~ 1 

and the nth ceramic disk's kinetic energy is 

(""'0 , 

T„ = 2 \ PnA„ul(X, t)dx + 2 meUniX, Olx=«rfo ( 2 3 ) 

Therefore, the total kinetic energy is 

n 

TT=1, T, 
1=1 

= 5 pA X uf(x, t)dx + \ meiilix, f)U=«d„(24) 
;=1 •'(••-1)4 

or 

TT = \PA u^{x,t)dx + \meU^{ndo, t) (25) 
Jo 

The Lagrange function of the electromechanical system is 
(Crandall, 1990) 

£ = Tr - VT - WT - ZT (26) 

Journal of Dynamic Systems, Measurement, and Control 

— 9 — lest 
— •!• — simu 

VOtTAOC (V) 

Fig, 8 |y/leasured and simulated static expansion characteristics of sub­
jected to a DC Input voltage 
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Electromechanical coupling energy 

Zr = 
do 1=1 c, •'(/-IWo 

(awi(f) cos (ax) 

+ 3w2(/)fl cos (3ax))(ic (36) 

Kinetic energy is 

TT = likrue + m)(H'?(f) + wlit)) + \i-2mw,it)w2{t)) (37) 

The virtual work can be written as 

8W = -K„{wi{t) - Wlit)) 

- C„(w,(f) - W2{t))(8w, - dw2) + S VMi (38) 

On substituting these Eqs. (34), (36), (38), and (19) in Eq. 
(26), the Lagrange function becomes; 

£ = -{-m, + mj(w?(0 + wlit)) 

+ -(-2mwi(r)H'2(r)) 

-i^fc(w?(0 + 9 w ( 0 - 2 ^ ) - i i ^ 
2 8 2 ;^, Ci 

system will have the same form as the external voltage source, 
i.e., 

q{t) = QeJ^', V(t) = Vijuj)e'--, 

wdt) = W,(juj)e'^-, W2it) = W2iJLo)eJ^- (43) 

Equation (40) can now be written as 

- m , + m]wi + CHWI + { — K^ + KH]WI 

imW2 + C„W2 + KHW2) ^ = 0 

1 /97r^ 
- nte + m)w2 + C„W2 + I — K, + KH] Wa 

- (/wvi>,, + C„wi + KHW,) + . ^ ^ ^ = 0 (44) 
doCo 

and Eq. (41) becomes 

do ,= 1 Ci J (1-1 Wo 
(awi(f) cos (flx) 

^ 1/ _L dijE^A n — = nv -\ -_ (wi — W2) 
Co UQCO 

(45) 

+ 3aH'2(f) cos (3flj;))fitic: (39) Applying Eq. (43) to the above three equations, yields 

- Ke + KH 

-iKn - mu)^ + JCHUI) 

dsTiE^A 

-iKH- mu;^ +JCHUJ) -
d^jE^A 

UQCO 

9n^ 

-ifne + m)ui + JCHOJ 

di^E^A 

d,,E^A 

doCo 

W.iJLO) 
Wjijio) 
Qijio) , 

0 
_ 0 
ViJLO), 

(46) 

ndoCo ndoCo Co 

The Lagrange's equation is given by 

7 (1^) - T^ = -'̂ "̂ ' - <̂ ''̂ ' (' = 1-2) (40) at \ awi j aw I 

and 

m-i'- "•-•̂  "' '̂ •' 
Assume that the voltage and charge on each disc are the same 

V, = V, q, = q (42) 

and that each disk has the same capacitance as evaluated with 
zero force and voltage applied, c, = CQ. The responses of the 

14 / Vol. 119, MARCH 1997 

The transfer function between the tip displacement and applied 
(input) voltage is obtained by combining Eqs. (30) and (45) 
to obtain 

r (• ^ ^ 0 ' ^ ) H.IST^^K, - m,uj^)d,,K,n ^.„^ 
Optao(7tj) = . = . (47) 

Vijuj) Aijui) 

The transfer function is defined as the ratio of the actuator 
tip displacement to the input control voltage. The actuator tip 
displacement is 

Uindo,t) = Wtit) - W2(t) (48) 

Using Eqs. (44), Eq. (47) can be written as 

Uindo, t) = Ui}U})e''^' (49) 
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and 

A(;w) = [ ^ K, + KH - (-rrie + m]LJ^ + JCHUI 

X {-n'^Ke + KH - i-m, + m)u^+ JCHUJ 

- {KM - mu^ + jCnUjy (50) 

and the piezoelectric charge constant is related to the expansion, 
external DC voltage, and number of piezoelectric plates as 

dn = 
Vn 

(51) 

Correlation of Analytical and Test Results for the 
Piezoelectric Actuator 

Figure 7 shows the measured transfer function (ratio of tip 
displacement to the input voltage) for the piezoelectric actuator. 
Figure 8 shows the measured and simulated static expansion 
characteristics of the actuator subjected to an external DC volt­
age. The product of the piezoelectric charge constant and num­
ber of the piezoelectric plates (d^^n) can be identified by Eq. 
(51) and the test results in Fig. 8. The expansion under the 100 
V DC voltage is 3.5 mil. Hence d^n can be obtained as 

d%3n = — = 
3.5 X 0.0254 X 10-^ 

100 
= 9.0E - 7 m/v (52) 

The actuator's other physical parameters are obtained from the 
manual and measurement. These parameters are specified be­
low: 

K, = 33E + 6 N/m 

KH = 15E + 6 N/m 

m = 0.09 kg 

m, = 0.023 kg 

CH = 5007V s/m 

On substituting the above parameters into Eq. (46), the transfer 
function becomes 

2000 3000 40CO SOOO 6000 

FREQUENCY (HZ) 

Fig. 9 Tlie transfer function comparison of simulation witli test for 
piezoelectric actuator 

•^out (-J ) 

Hu(s) Hn(s) 

Xi„(i) 

or 

FoAs) 

-^out('') 
= H\ 

Finis) 
X;„{S) 

(54) 

(55) 

By inverting matrix H, Eq. (54) can be written as 

Gpiezo(7W) = 
5 . 2 E - 7 -I- 2 . 8 £ - 17(7a;)' 

1 + 8.843E - 6juj + IJ84E - 9ijujf + 435E - I6(jujy + 8.26E - IQijujy 
(53) 

Figure 9 shows the transfer function comparison between simu­
lation and measured data. Good agreement was achieved in 
amplitude at resonance when a reasonable amount of external 
damping (C« = 500 N-s/ra) was used in (53). 

Hydraulic Actuator Dynamic Model 

An accurate dynamic model of a hydraulic actuator is difficult 
to obtain, due to the effects of the pipe or tube material, geome­
try, fluid properties, assembling and mounting conditions, etc. 
The transfer function matrix measurement method can be used 
for identifying this model. Figure 10 represents the relation 
between input force, input displacement and output force. Out­
put displacement and force are obtained from 

or 

where 

Fin(s) 

Xin(s) 

Gn(s) 

G2ds) 

Gnis) Gn(s) 

G2iis) G22is) 

FnM 

XiAs) 

Guis) 

G22(S) 

= G 
Fontis) 

XQM(S) 

FM(S) 

•Xout('S) 

Hnis) Hn(s)^-' 

H2lis) H22(S), 

(56) 

(57) 

(58) 
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fin(s) FoutCs) 

Xin(s) Xout(s) 

Fig. 10 Hydraulic actuator transfer variables 

from Eq. (56) 

^i„(^) = GnF,,,is) + G22(s)X,As) (59) 

The G2i(j'), and G22(s) are obtained by employing the follow­
ing boundary conditions 

and 

G21 = 

G22(S) 

FouM 
(60) 

x„„,(.0=o 

Mil 
•*out('S') foutCO'O 

then the output force Fo^t(s) is obtained from equation (59) 
and is given as 

FUs) = Gj,'(i)(X,„(^) + G22(s)X,As)) (62) 

Equation (62) is represented as a flow diagram in Fig. 11, 
where x*(s) is rotor motion, and Xi„(s) is the input piston 
displacement or piezoelectric actuator tip displacement. It is 
obvious that the output force to rotor is coupled by the input 
and output displacements. In other words, the output force is 
determined by the hydraulic actuator, piezoelectric actuator, 
and rotor motions. Equation (62) also provides a convenient 
approach in assembling the closed loop model. GJi'(i) can be 
identified by the following enforced boundary equation 

GJ,'(^) = 
Xi„(s) 

Equations (60) and (61) can be rewritten as follows 

=0 "force ^in (*)| 
G2HS) = 

and 

G22(S) = 
:^i„(^) 

-^out i^J 

„vi„(^) 

F„,„(I)=0 AnVout(*) 

(63) 

(64) 

(65) 

Fig. 12 Hydraulic actuator transfer function matrix measurement setup 
(input probe and piezoelectric actuator) 

(61) Therefore, Eqs. (64) and (65) can be written as 

G2US) = 
^i.,(.^-) 

^out(^) 
1.046 10' 

Vi„(^) 

1.36 10' + 8.726.J 

1 + 1.285 10~"i - 1,2638 IQ-'s^ 
(66) 

and 

G22(.S) = 
/3ou.Vin(^) 

AnKi,t(^-) 
1.32 

f„„,(i)=0 

Vin(^) 

Km(^) 

0.42 + 1.18910^'.? 

1 + 1.04110" 4.8610^^ 
(67) 

''out(*)=» 

Figures 12 and 13 show the photos of the setup for measure­
ment of transfer functions which are represented in Eqs. (66) 
and (67). There are two Bently probes (input piston probe and 
output piston probe) and one force gauge in the measurement 
setup. The input probe was used in sensing the input piston 
displacement through a extension bar which was set between 
the input piston and piezoelectric actuator tip. The output piston 
probe which was mounted in a fixed block was used directly 
in measuring the output piston displacement. A force gauge was 
employed in obtaining the output force. The measurement setup 
to satisfy the boundary condition in Eq. (66) is to fix the output 
piston against the force gauge face which was mounted on the 
wall of the fixed block. The transfer function in Eq. (66) can 

where: 

POM sensitivity of output displacement probe (9960 V/m) 
^in sensitivity of input displacement probe (7559 V/m) 
ttforce sensitivity of output force gauge (7.225 £-3 WA )̂ 
ypomis) analog signal of output force gauge {V) 
Vamis) analog signal of output displacement probe (V) 
Vi„(j) analog signal of input displacement probe (V) 

Fout(s) 
G22(s ) 

G3,(s) 

f7 

t ' Xin(s) 

X*(s) 

Fig. 11 Flow diagram of the transfer Eq. (62) 

16 / Vol. 119, MARCH 1997 

Fig. 13 Hydraulic actuator transfer function matrix measurement setup 
(output probe and force gauge) 
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Fig. 14 Curve fit-measurement comparison for G2,'(s) 

be obtained by the analysis of force signal and input piston 
signal. In similar way, the setup to satisfy the boundary condi­
tion in Eq. (67) is to set the output piston against a very small 
spring stiffness. The transfer function in Eq. (67) can be ob­
tained from the input piston displacement and output piston 
displacement signals. 

160 180 200 

FREQUENCY (HZ) 

u 

a. 

LEGEND 

- • - n/c, 0.6 q 
- + • w/c. 0.6 9 
- - * - n/c, lesl 0.6 g 
- G • w/c, lesl 0.6 g 

/ • • • 

Fig. 15 Curve fit-measurement comparison for 622(8) 

O- 4000 5000 6000 7000 6000 9000 

ROTOR SPEED <RPM) 

n/c. no Conlrol 

Outboard Bearing Damping =150 N/m/s "''' *'* Control 

Inboard Bearing Damping =50 N/m/s 

Fig. 16 Application of active vibration controi simulation with electro­
mechanical modeling of the piezohydraulic actuator 

Figures 14 and 15 are the curVe fits for VVoui(^)/Vin(i') and 
Vin(i)/youi(i'). respectively. The test result in Fig. 14 could be 
curve fitted by a higher order model. However, a second-order 
transfer function model (see Eq. (66)) was employed for sake 
of illustration. The piezoelectric actuator was used for the active 
vibration control of an air turbine driven test rotor at NASA 
Lewis. This application is described in Lin (1991) and Palaz-
zolo (1991a, 1991b). An electromechanical model was con­
structed for the flexible rotor/shaft, PD controller and piezo­
hydraulic actuators (4). The theoretical and measured vibration 
amplitude vs. rotor speed curve are shown in Fig. 16, for the 
case of traversing a critical speed. 

Summary 

The electromechanical dynamic model of the piezohydrau­
lic actuator system was developed. An electromechanical en­
ergy based method was employed in the piezoelectric ceramic 
disk or plate to get the total energy of a stacked piezoelectric 
actuator. A fourth-order model was used in obtaining the 
transfer function of the piezoelectric actuator between its 
input voltage and output displacement. This model may be 
assembled into the closed loop dynamic simulation. Good 
agreement was achieved between simulation and test results. 
Transfer matrix components for the hydraulic actuator were 
identified by shaking the actuator with special boundary con­
ditions. The output force of the hydraulic actuator was repre­
sented by a linear combination of the input and output dis­
placement transfer function components. Good correlation of 
test and simulation for a rotor test rig with piezo-hydraulic 
actuator based AVC was included. 
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