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a b s t r a c t 

The treatment of thermal mixing in inter pad grooves of a fluid film bearing is essential due to its influ- 

ence on the heat transfer with the rotating shaft and stationary bearing. Lower fidelity models that either 

neglect or over approximate thermal groove mixing may lead to premature bearing or machinery failure, 

most commonly from babbitt thermally induced fatigue. Conventional models rely on bulk flow and ther- 

mal analyses yielding a single temperature at the groove outlet into the pad inlet. The high uncertainty 

of this approach carries over into downstream predictions for bearing life, stiffness and damping, and 

machinery vibration predictions. Contrary to a uniform temperature, CFD-Conjugate heat transfer stud- 

ies reveal large gradient temperature distributions varying in both the radial and axial directions at the 

groove outlet, especially with jet lubrication implemented with multiple nozzles. These distributions vary 

continuously with time as the spinning shaft and bearing pads vibrate. A direct CFD simulation thus 

becomes computationally prohibitive. 

The present work introduces a novel approach which yields highly detailed lubricant temperature 

distributions at the pad inlets in a computationally economical manner. This is implemented with a sur- 

rogate groove model via a deep convolutional autoencoder neural network based on CFD (Computational 

Fluid Dynamics) data. The trained Convolutional Neural Network (CNN) shows excellent prediction capa- 

bility for 2D temperature distribution at a circumferential groove outlet. The trained CNN is combined 

with a rotor-bearing model, and the combined model is verified by full CFD results and experimental 

data. In addition, this approach is expanded to include various oil injection types, illustrating their de- 

tailed heat transfer to the rotating shaft and bearing. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

High performance turbines, compressors, pumps, turboex- 

anders, etc. rely on fluid film bearings for shaft load support 

nd vibration control. The lubricant temperature in the bearing is 

ighly affected by the method of lubrication and operating con- 

itions. The lubricant temperature also affects viscosity which in 

urn affects load capacity, minimum film thickness, and stiffness 

nd damping. Furthermore, temperature affects the mechanical in- 

egrity of the bearing, i.e. accelerated corrosion, increased thermal 

nd vibration induced fatigue, and creep induced rippling with in- 

reased temperature. Thus, accurate bearing thermal analyses need 

o be conducted to properly design the machine to avoid exces- 

ive vibration and bearing thermal induced damage. Bearing and 

ournal temperatures are highly influenced by the mixing of the 

ooler supply oil with the hotter carryover oil between pads. Thus, 
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t is highly important to adapt an accurate model of the thermal 

ow mixing that occurs in the grooves between pads, including ef- 

ects of the moving surfaces and oil injection jets. Fig. 1 (a) and (b)

rovides an illustration of the thermal flow mixing in a generic 

roove region. This determines the groove outlet flow temperature 

istribution which is the distribution at the following pad’s leading 

dge inlet. Therefore, the journal and pad temperatures are influ- 

nced by the thermal flow mixing between pads. The importance 

f this influence is widely recognized [1–4] but has been treated 

ith highly approximate modeling due to computational time con- 

traints. Examples of recent publications implementing simplified 

hermal groove models include [5–9] . 

Recent studies [10–12] presented a full CFD model for a bearing 

ystem, including the groove regions. However, this approach leads 

o excessive computation time for conducting parametric studies 

ypically required in an industry design setting, considering geom- 

try, nozzle configuration and operation condition variations for 

ilting pad bearings. 

Nonlinearities, turbulence model selection, and other factors as- 

ociated with solving the Navier-Stokes equations, and the poor 
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Nomenclature 

T Temperature, degC 

Q Flow rate, m 

3 /s 

η Non-dimensional temperature 

ηk Mixing coefficient 

p Static pressure, Pa 

p ′ Modified pressure, Pa 

ρ Density, kg/m 

3 

u i Fluid velocity, m/s 

μl Fluid dynamic viscosity, Pa ·s 
μt Eddy viscosity, Pa ·s 
μe f f Effective viscosity, Pa ·s 
k Turbulent kinetic energy, m 

2 /s 2 

ω Turbulent frequency, 1/s 

γ Turbulent intermittency 

h tot Total enthalpy, J/kg 

λ Thermal conductivity, W/(m ·K) 

h l Film thickness, m 

U s Shaft surface velocity, m/s 

x p Pad x-coordinate at interface between fluid-film and 

pad, m 

y p Pad y-coordinate at interface between fluid-film and 

pad, m 

x s Shaft x-displacement, m 

y s Shaft y-displacement, m 

R s Shaft radius, m 

h te Film thickness change by thermal deformation, m 

c p Specific heat, J/(kg ·K) 
�
 U Fluid velocity vector, m/s 

K yy Non-dimensional direct stiffness coefficient 

C yy Non-dimensional direct damping coefficient 

k yy Direct stiffness coefficient, N/m 

c yy Direct damping coefficient, N ·s/m 

Subscripts 

in Groove circumferential inlet 

out Groove circumferential outlet 

sup Supply oil inlet 

l Liquid (or fluid) 

s Shaft (or solid) 

Acronyms 

CFD Computational Fluid Dynamics 

CNN Convolutional Neural Network 

DOE Design of Experiment 

FEM Finite Element Method 

FVM Finite Volume Method 

GPU Graphics Processing Unit 

RANS Reynolds Averaged Navier Stokes 

ReLU Rectified Linear Unit 

RMSE Root Mean Squared Error 

SST Shear Stress Transport 

LEG Leading Edge Groove 

LHS Latin Hypercube Sampling 

rthogonal mesh quality which converging-wedge shaped thin- 

lm modeling can produce, further exacerbates the computation 

ime challenge. Thus, the conventional approaches, which apply 

he Reynolds model for thin-film regions, have been broadly used 

n industry and academic areas. This approach employs a mixing 

oefficient ( ηk ) to predict a highly simplified, approximate uni- 

orm non-dimensional temperature distribution at the groove out- 

et, which is the pad leading-edge. 
2 
Define the non-dimensional temperature, η( r , z ) , by 

(r, z) = 

T out (r, z) − T sup 

T in − T sup 
= f ( Q in , Q out , ηk ... ) (1) 

here T sup , T in , and T out are the supply oil temperature, circumfer- 

ntial groove inlet temperature, and circumferential outlet temper- 

ture, respectively. The mixing coefficient is an assumed constant, 

ypically ranging from 0.4 to 1.0, according to oil injection types. 

ttles [1] proposed the simplest form of a groove model, where 

he non-dimensional temperature is equal to the mixing coefficient 

 η( r , z ) = ηk ). However, the Ettles’ model does not satisfy mass and 

nergy conservation, which then compromises the temperature so- 

ution. Mitsui et al. [2] derived a mathematical expression for the 

emperature calculation at the pad leading edge from mass and en- 

rgy balances ( η( r , z ) = ηk | Q in 
Q out 

| where , Q in : circumferential groove 

nflow [m 

3 /s], and Q out : circumferential groove outflow [m 

3 /s]). 

uh and Palazzolo [3] pointed out that Mitsui’s model has a lim- 

tation when Q in / Q out is higher than 1, and they suggested a re- 

ised form ( η( r , z ) = min [ | Q in / Q out | , ηk ] ) for the non-dimensional 

emperature distribution at the pad leading-edge. In a recent study, 

bdollahi and San Andres [4] presented a groove model from mass 

nd energy balances, including the circumferential groove inflow, 

ircumferential groove outflow, side leakage flow, supply oil flow, 

nd recirculating oil flow with the groove efficiency parameter as- 

umed from 0.1 to 0.9, instead of using the mixing coefficient. The 

ain drawbacks of the aforementioned conventional approaches 

re the assumed value of the mixing coefficient, and neglect of the 

emperature distribution in the radial and axial directions at the 

ircumferential groove outlet. 

Proposed here is a novel machine learning approach to provide 

ccurate pad leading edge, inlet conditions. This utilizes regression 

ith respect to various input parameters to remove the thermal 

ixing coefficient’s uncertainty. Machine learning techniques are 

ecoming more popular for regression in the heat transfer area, 

howing reliable prediction performance. Liang et al. [13] proposed 

 deep neural network to calculate boiling heat transfer in helical 

oils, and the neural network was trained on the measured test 

ata. Zhu et al. [14] took advantage of machine learning to predict 

he heat transfer of two-phase flow boiling and condensation in 

ini channels. In addition, machine learning techniques have been 

mployed for the prediction of effective thermal conductivity in 

ands [15] , dynamic thermal behavior of super-capacitor modules 

16] , thermal properties of composite phase change materials [17] , 

nd so on. 

Yang and Palazzolo [18] applied machine learning to lessen 

he uncertainty of the pad film inlet temperature boundary con- 

ition, due to assuming a uniform inlet temperature mixing coef- 

cient. The researchers used a shallow neural network for the re- 

ression of mixing coefficient based on CFD-generated data. Even 

hough the research showed reliable generalization of the neural 

etwork, the model did not provide a 2D temperature distribu- 

ion at the pad leading edge, but instead provided a single mix- 

ng coefficient for the average inlet temperature. This is inadequate 

or some high performance bearings that have highly varying tem- 

eratures over the pad inlets due to localized bearing cooling ap- 

roaches. The temperature distribution at the pad leading edge af- 

ects the heat transfer to the rotating shaft and tilting pads, which 

n turn changes film thickness due to thermal growths, load ca- 

acity, minimum film thickness and stiffness and damping coeffi- 

ients. The literature does not report any prior attempts to include 

 general 2D thermal boundary condition at the pad inlets, while 

tilizing a Reynolds based pressure model for the lubricant film. 

n this study, a deep convolutional autoencoder neural network, 

hich consists of an encoder and decoder with convolutional lay- 

rs, has been presented to predict the 2D temperature distribution 

t the pad leading edge, and the neural network is trained based 
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Fig. 1. Illustration of groove thermal mixing and application in rotor-bearing system; (a) rotor-tilt pad journal bearing, (b) groove thermal mixing (side view). 

Fig. 2. Computational domains; (a) CFD groove model, (b) rotor-bearing model (45,920 elements) with Reynolds-based Fluid-film (adjusted scale for better visualization). 
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n CFD-generated results for the groove region. The proposed neu- 

al network shows excellent generalization performance with the 

daptable design process. The trained neural network is used as a 

urrogate groove model, and it is combined with a thermal-elastic- 

ydrodynamic rotor-bearing model. The proposed model has been 

erified through the comparison to test data [19] and full CFD re- 

ults [12] from previous studies. The accuracy limitation of the 

onventional, assumed constant mixing coefficient groove model is 

hown via comparison with high fidelity CFD results. In addition, 

everal neural networks are trained for various types of oil injec- 

ion. The significant difference of the temperature distribution, de- 

ending on oil injection type, highlights the importance of the pre- 

ented model. 

. Modeling methodology 

.1. Overall description 

Fig. 2 shows the 3D computational, bearing-journal domains 

reated in this study. Fig. 2 (a) shows the CFD groove model, where 

he temperature distribution at the pad leading-edge is utilized to 

enerate the data set for machine learning. Five injection cases are 
3 
nalyzed, in addition to the 3 nozzle, direct lubrication configu- 

ation depicted in Fig. 2 (a). The CFD groove model includes in- 

ompressible, thermal, and transitional turbulence flow, and the 

omentum equation employs the full Navier-Stokes equation. The 

otor-bearing model that excludes the groove regions is illustrated 

n Fig. 2 (b). The rotor-bearing model consists of the shaft, fluid- 

lm, and pad domains. 

The generalized Reynolds [3] and energy equation are applied 

or the fluid-film modeling. The Reynolds equation is derived from 

he incompressible Navier-Stokes equation by combining the con- 

inuity and momentum equations after neglecting the fluid inertia 

erms with constant pressure assumption in the thin-film (radial) 

irection. Heat conduction is included for the pad and shaft do- 

ains. The pressure and temperature solutions are utilized to pre- 

ict the thermal-elastic deformation using a structure model. The 

eynolds equation reduces computation time significantly when 

ompared to solving the full Navier-Stokes equation, with minimal 

oss of accuracy. However, the groove region cannot be modeled by 

he Reynolds equation, due to its non-thin film domain. Therefore, 

he thermal flow in the groove region is separately simulated by 

 CFD groove model, and the combination of the CFD groove and 

otor-bearing models is implemented via deep (machine) learning 

or efficient and advanced analysis. 
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Fig. 3. Illustration of a deep convolutional autoencoder trained by a CFD groove model and its combining with a rotor-bearing model. 
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Fig. 3 represents the process to combine the groove and rotor- 

earing models. The deep convolutional autoencoder neural net- 

ork has a superior ability with regard to image-to-image predic- 

ion [20] . Thus, the CNN, which is one of the deep neural networks, 

s employed to predict the 2D temperature distribution at the pad 

eading-edge, while considering the various operating and geomet- 

ic conditions. Here, the 2D temperature distribution from the neu- 

al network is imposed at the pad leading-edge of the fluid-film 

omain in the rotor-bearing model. The CNN is trained with nu- 

erous CFD-generated data sets, through a deep learning algo- 

ithm. The neural network needs to provide good performance in 

he ranges of the designed input parameters (input design space). 

he input parameters’ ranges have been determined based on an 

xhaustive search of commercial bearing catalogs and based on 

est cases appearing in the literature [18] . 

Also, in the input design space, adaptable input parameter com- 

inations need to be generated for composing the training data set. 

he neural network should achieve reliable generalization in the 

iven input design space, which ensures excellent prediction per- 

ormance of the neural network for the test data set. The training 

ata set is used during the learning process, whereas the test data 

et does not participate in the training process. The test data is just 

tilized for generalization performance verification of the neural 

etwork after the training process. Yang and Palazzolo [18] sug- 

ested the hybrid Design of Experiment (DOE) with the 2-level full 

actorial and Latin Hypercube Sampling (LHS) for the input design 

pace, and the DOE yielded the optimal data number and achieved 

uitable generalization. This DOE method is applied for the input 

esign space in the present study. 

.2. CFD groove model (Data generation) 

As illustrated in Fig. 2 (a), the oil from the previous pad’s 

railing-edge (circumferential groove inflow) flows to the next 

ad’s leading-edge (circumferential groove outflow), dragged by 

he rotating shaft (rotating wall). The liquid oil supplied at the 

ozzles is discharged to the side outlets (side outflow) with vor- 

ex generation inside the groove. The vortex flow mixes the cold 

upply oil flow and hot circumferential groove inflow. The temper- 

ture distribution at the next pad leading edge is mainly affected 

y a convective mixing process. The flow regime is mainly laminar 

n the thin-film, but laminar and turbulent flow regimes can co- 

xist in the groove regions, depending on the shaft rotating speed. 
4 
he turbulent flow is modeled by the Reynolds Averaged Navier 

tokes (RANS) equations considering the automatic wall-function 

nd two-equation k- ω based Shear Stress Transport (SST) model 

21] for reliable accuracy at low-Reynolds number. The governing 

quations for the continuity, momentum, turbulent kinetic energy, 

nd turbulent frequency are given in Eqs. (2) - (5) , respectively. 

Continuity and momentum equations ( p ′ , u i ): 
∂ ρl 

∂t 
+ 

∂ 

∂ x i 
( ρl u i ) = 0 (2) 

∂ ρl u i 

∂t 
+ 

∂ 

∂ x j 

(
ρl u i u j 

)
= −∂ p ′ 

∂ x i 
+ 

∂ 

∂ x j 

[
μe f f 

(
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 

)]
(3) 

Turbulent kinetic energy ( k ): 

∂ ρl k 

∂t 
+ 

∂ 

∂ x j 

(
ρl u j k 

)
= 

∂ 

∂ x j 

[(
μl + 

μt 

σk 3 

)
∂k 

∂ x j 

]
+ P k − 0 . 09 ρl kω 

(4) 

Turbulent frequency ( ω): 

∂ ρl ω 

∂t 
+ 

∂ 

∂ x j 

(
ρl u j ω 

)
= 

∂ 

∂ x j 

[(
μl + 

μt 

σω3 

)
∂k 

∂ x j 

]

+(1 − B 1 ) ρl 

1 . 712 

ω 

∂k 

∂ x j 

∂ω 

∂ x j 
+ α3 

ω 

k 
P k − β3 ρl ω 

2 (5) 

The dependent variables of the continuity and momentum 

quations are the modified pressure ( p ′ ) and fluid velocity ( u i ). 

l , μl , μt , and P k are the fluid density, fluid dynamic viscos- 

ty, eddy viscosity, and turbulent production term, respectively. 

he summation of the fluid dynamic viscosity and eddy viscos- 

ty is the effective viscosity ( μe f f ). The other constants, including 

k 3 , σω3 , α3 , and β3 , are determined by the blending function ( B 1 ). 

ince the transition between laminar and turbulent flow regimes 

akes place inside the groove, the gamma transitional turbulence 

odel is employed, and the governing equation for the turbulent 

ntermittency, which has zero (laminar) to one value (turbulence), 

s written in Eq. (6) . 

Turbulent Intermittency ( γ ): 

∂ ρl γ

∂t 
+ 

∂( ρl u j γ ) 

∂ x j 
= 

∂ 

∂ x j 

[
( μl + μt ) 

∂γ

∂ x j 

]
+ S γ (6) 
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Fig. 4. Boundary conditions for CFD groove model. 
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The solution of the turbulent intermittency equation modifies 

he source terms in Eq. (4) to reflect the effect according to the 

ow regimes. The source term ( S γ ) of Eq. (6) mainly depends on 

he transition onset Reynolds number. In addition, the fluid energy 

quation expressed in Eq. (7) is solved to get the temperature field 

or the groove model. 

Fluid Energy Equation ( T l ): 

∂ ρl h tot 

∂t 
− ∂ p 

∂t 
+ 

∂ 

∂ x j 

(
ρl u j h tot 

)
= 

∂ 

∂ x j 

(
λl 

∂ T l 
∂ x j 

)
+ 

∂ 

∂ x j 

[
u i 

(
−p ′ δi j + μe f f ( 

∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 
) 

)]
(7) 

p, h tot , and λl are the static pressure, total enthalpy, and fluid ther- 

al conductivity. 

Fig. 4 shows the boundary conditions for the CFD groove model. 

he circumferential groove inlet and outlet and side outlets are 

rescribed with the static pressure, temperature, and zero gradient 

urbulence. The total pressure, temperature, and medium turbu- 

ence intensity are imposed at the supply oil inlet. The moving wall 

oundary condition is applied at the journal surface to account for 

he shaft rotation effect. All wall boundary conditions are assumed 

diabatic due to the dominant influence of advection heat. Only 
Fig. 5. (a) Mesh independence results and (b) typical groove mesh. Groove geometry is 

5 
he symmetric half domain with respect to the x-y plane is con- 

idered, in order to reduce computational load. 

ANSYS CFX is utilized as the CFD solver. The high-resolution 

dvection scheme is selected in the CFD solver. The CFD solver 

btains the solution for the dependent variables in the transient 

nalysis (Second Order Backward Euler). The initial condition, time 

tep, and duration are suitably determined to guarantee robust 

onvergence from the empirically acquired information based on 

umerous simulations. Also, mesh density is reasonably applied 

hrough an adaptable grid study. Fig. 5 (a) illustrates a mesh inde- 

endence result, for a representative set of model parameters. The 

esh density ( Fig. 5 (b)), with 30,789 elements, is adopted to ob- 

ain both accuracy and computational efficiency. This was accom- 

lished by verification with a full CFD model [ 10 , 12 ]. The 30,789

lement mesh is implemented for all oil injection cases. 

To generate the massive training and test data for machine 

earning, automatic geometry generation, meshing, solving, and 

ata-saving methods have been established by a developed Python 

ode compatible with the ANSYS workbench environment. The 

omputations are parallelly executed by the supercomputing sys- 

em (Texas A&M University High Performance Research Computing, 

AMU HPRC). 

.3. Deep convolutional autoencoder (Surrogate groove model) 

The main benefit of applying machine learning, instead of the 

irect combination of the groove CFD model with the dynamic 

otor-bearing model, is to reduce the calculation time significantly. 

he artificial neural network needs to predict the 2D temperature 

istribution at the circumferential groove outlet, and it can be clas- 

ified as the image regression in machine learning. The CNN has 

 strong ability when conducting image classification and recog- 

ition in machine learning [20] . Furthermore, from a comparative 

tudy on shallow, deep feed-forward, and deep CNNs, the superi- 

rity of the CNN has been confirmed as a surrogate groove model 

hen viewing the computational time and the regression perfor- 

ance. Thus, the convolutional autoencoder network is chosen in 

his research for the image (2D temperature distribution) predic- 

ion. 

A complex neural network may cause an overfitting problem 

significant test data error) with increased training time. In con- 

rast, a simple neural network can have difficulty getting reliable 

eural network performance. So, an optimal neural network is 

earched by adjusting neural network size until the test data er- 

or reaches a minimized value. The designed neural network is il- 

ustrated in Fig. 6 . The input image of the CNN is encoded and

hen decoded to reconstruct the image via the filters (or kernels) of 
for a 101.6 mm diameter, 50.8 mm length, 5 pads, 60 deg pad arc length bearing. 
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Fig. 6. Designed convolutional autoencoder neural network. 
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Fig. 7. Examples of (a) convolution and (b) transposed convolution steps. 

e

∇

s

r

D

D

h

he convolutional layer, which can perceive various patterns (edges, 

orners, etc.). The input image (3 by 3 matrix) is made by nine in-

ut parameters (numeric values) that are transformed from zero 

o one, and the input parameters are specified in Section 3.1 . The 

ncoder has only a 2D convolutional layer regarding the small size 

f the input layer, and the decoder is comprised of the transposed 

onvolutional and convolutional layers to generate the output im- 

ge (16 by 16 matrix) which represents the non-dimensional tem- 

erature distribution at the circumferential groove outlet. The out- 

ut values are limited to zero to one by the clipped ReLU (Rectified 

inear Unit). 

The convolutional layer convolves the input through the shift 

f kernel in the vertical and horizontal direction with two strides 

two pixels) while calculating the dot product of weight factors 

nd input and then adding the bias factor. The transposed convolu- 

ional layer expands input size by leaving a space between the in- 

ut elements with two strides. The other calculation procedure is 

nalogous to the non-transposed convolutional layer. Fig. 7 depicts 

he convolution ( Fig. 7 (a)) and transposed convolution ( Fig. 7 (b)) 

teps of the input, via the kernel shift with numeric examples. 

The ReLU ( f (x ) = max [ 0 , x ] ), which is an activation function, is

ollowed by the transposed and non-transposed convolutional lay- 

rs. The padding is utilized to adjust the output size, and the same 

adding makes the output size have the same size as the input 

ize. The pooling layer is not considered because an apparent ben- 

fit was not observed in this study. 

The Adam algorithm (adaptive momentum estimation) is ap- 

lied, with sampling a minibatch and shuffling every epoch, for 

eural network training, which is the process to find the weight- 

ng and bias factors through an optimization algorithm. The train- 

ng computation is carried out by taking advantage of the power of 

PU (Graphics Processing Unit), and it is implemented by MATLAB. 

he minibatch size, learning rate, L2 regularization factor, gradient 

ecay factor, and squared gradient decay factor are 128, 1.e-3, 1.e- 

, 0.9, and 0.999. 

.4. Rotor-bearing model 

The computational domains for the rotor-bearing model are de- 

icted in Fig. 2 (b), and the domains include the fluid-film, rotor, 

nd bearing (five pads). As mentioned in Section 2.1 , the fluid-film 

s simulated by the generalized Reynolds equation in the following 
6 
quation. 

 · ( D 1 ∇p) + (∇ D 2 ) · U s + 

∂ h l 

∂t 
= 0 (8) 

p is the static pressure (dependent variable), and U s is the shaft 

urface velocity. D 1 and D 2 are given in the following equations 

espectively. 

 1 = 

h l ∫ 
0 

z ∫ 
0 

ξ

μl 

d ξd z −
h l ∫ 

0 

ξ

μl 

d ξ

h l ∫ 
0 

z ∫ 
0 

1 

μl 

d ξd z/ 

h l ∫ 
0 

1 

μl 

d ξ (9) 

 2 = 

h l ∫ 
0 

z ∫ 
0 

1 

μl 

d ξd z/ 

h l ∫ 
0 

1 

μl 

d ξ (10) 

The film thickness ( h l ) is expressed by 

 l = 

√ 

( x p − x R ) 
2 + ( y p − y R ) 

2 − R s − h te (11) 



J. Yang and A. Palazzolo International Journal of Heat and Mass Transfer 188 (2022) 122639 

Fig. 8. Illustrations of geometric parameters and heat transfer mechanism in rotor-bearing system; (a) geometric parameters over entire bearing, (b) heat transfer mechanism 

with geometric parameters. 
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here x p and y p are the pad x and y coordinates at the inter- 

ace between the fluid-film and pad, and x s , y s , R s , and h te are 

he shaft x-displacement, shaft y-displacement, shaft radius, and 

lm thickness change from shaft and pad thermal expansions [3] . 

he fluid dynamic viscosity is ( μl = μo e 
α( T l −T o ) , where μo : viscos- 

ty at reference temperature, T o : reference temperature, α: decay 

onstant). Since the viscosity varies with fluid temperature, the 

eynolds equation is considerably influenced by the solution of the 

nergy equation 

l c p,l 

(
∂ T l 
∂t 

+ 

−→ 

U · ∇ T l 

)
= ∇ · ( λl ∇ T l ) + μl 

[ (
∂u 

∂y 

)2 

+ 

(
∂w 

∂y 

)2 
] 

(12) 

here c p,l , λl , and 

�
 U are the fluid specific heat, thermal conduc- 

ivity, and velocity vector, respectively. The velocity field ( u , v , w )

s derived from the pressure field [3] . The thermal deformation of 

he solid domains by the temperature, impacts the film thickness 

hich is a sensitive parameter in the Reynolds equation, and so 

he temperature prediction for the solid domains should be con- 

idered. The heat conduction equation for the solid domain is 

s c p,s 
∂ T s 
∂t 

= ∇ · ( λs ∇ T s ) (13) 

s , c p,s , λs , and T s are the solid density, specific heat, thermal con- 

uctivity, and temperature with respect to the shaft and pads. In 

ddition, the thermal elastic deformation of the solid domains is 

alculated with a 3D structure model [10] . 

The Reynolds equation requires the pressure boundary condi- 

ions at the pad leading and trailing edges and the side outlets. 

he ambient pressure (static) is imposed at the side outlets, and 

he pressure of the pad leading and trailing edges are determined 

rom the surrogate groove model between pads [18] . For the ther- 

al boundary conditions, the temperature at the pad leading-edge 

s prescribed by the trained CNN, and zero gradient temperature 

s applied at the pad trailing edge and side outlets. The inter- 

ace boundaries between the shaft and fluid-film and between the 

uid-film and pad are set up to maintain the temperature and heat 

ux continuity. The outer surfaces of the shaft and pads are pre- 

cribed by heat transfer coefficient and ambient temperature. The 

oundary conditions for the structure model are well specified in 
7 
he previous study [10] , and this study suitably adopts identical 

ay to consider the pivot stiffness depicted in Fig. 8 (a). 

Fig. 8 represents the important geometric parameters used in 

his study and the major heat transfer mechanism. The second 

erm of the right-hand side of Eq. (12) is the main heat source 

y viscous dissipation, and the generated heat in the thin-film is 

ransported in the circumferential direction and diffused to the 

mbient passing through the rotating shaft and pads. Here, the 2D 

emperature distribution at the pad leading-edge of the fluid-film 

s significant since it directly affects the amount of heat transferred 

o the shaft and pad, solid temperature distribution, and solid ther- 

al deformation. It highlights the importance of the proposed sur- 

ogate groove model, considering the 2D temperature distribution 

t the pad leading-edge. In order to solve the governing equations 

ith discretization, the Finite Volume Method (FVM) is employed 

or the fluid-film domain, and the Finite Element Method (FEM) is 

pplied for the structure model. The computation is implemented 

y in-house-based MATLAB/C/C ++ code. 

.5. Calculation procedure 

For the rotor and pad degrees of freedom, a dynamic struc- 

ure model with modal reduction technique is employed to elim- 

nate the singularity problem with a static structure model [3] . 

ig. 11 represents the calculation procedure for static performance 

nd dynamic coefficient prediction of a tilting pad journal bear- 

ng. Time integration is performed for the structure model utiliz- 

ng the adaptive Runge-Kutta method. During the time integration, 

he Reynolds and energy equations in the fluid-film have been se- 

uentially solved while updating the temperature distribution at 

he pad leading-edges by the trained CNN. In addition, the film 

hickness and its time derivative changes with time due to the dis- 

lacement and velocity of the rotor and pads. The Reynolds and 

nergy equations are coupled through the dynamic viscosity and 

uid velocity. The Reynolds model yields the pressure solution to 

erive the fluid velocity, and the fluid velocity is transferred to the 

nergy equation of the fluid film. The energy equation updates the 

ynamic viscosity in the Reynolds equation by utilizing the new 

uid velocity and temperature. The dynamic viscosity varies only 

ith temperature and the density is a constant. The pressure and 

emperature solutions are applied to the interface boundary condi- 

ions of the solid domains, after reaching the equilibrium state of 
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Fig. 9. Various types of oil injection treated in this study; (a) one orifice, (b) one nozzle, (c) three nozzles, (d) leading edge groove (LEG). 

t

o

p

d

i

t

d

a

3

3

t

L

T

fi

h

p

t

s

a

c

m

h

s

w

b

F

a

t

(

(

(

(

(

(

c

a

m

g

i

c

i

c

T

a

i

t

p

L

g

he rotor and pads. Then, the temperature of the solid domains is 

btained by solving the heat conduction equation. The solid tem- 

erature solution is input in the thermal deformation solver, with 

isplacement solution transferred to the fluid-film model for the 

nterface boundary prescription. The thermal deformation changes 

he film thickness in the Reynolds equation. The calculation proce- 

ures above continue until the relative error of the temperature of 

ll domains reaches the given criteria. 

. Results and discussion 

.1. Case description and dataset 

This section explains the cases according to various oil injection 

ypes, and their generated datasets from the CFD groove model. 

ubrication can be classified as either flooded or direct lubrication. 

he flooded lubrication is the conventional one, and it has an ori- 

ce with close-end seals (relatively larger diameter and thin seal 

eight). On the contrary, the direct lubrication has one or multi- 

le nozzles with open-end seals (relatively smaller diameter and 

hick seal height). Fig. 10 (a) shows the orifice diameter ( D g ) and 

eal height ( h s ). The direct lubrication has an exceptional cooling 

bility (low temperature) at the pad leading-edge of the fluid film, 

ontrary to the flooded lubrication. This cooling capability is imple- 

ented by small diameter nozzles and open-end seals. The nozzles 

elp penetrate the supplied oil to the shaft surface with less pres- 

ure drop by the open-end seals. Also, mixed lubrication is utilized, 

hich can be made from the combination of direct and flooded lu- 

rication features. 

Fig. 9 shows the four lubrication types treated in this study, and 

ig. 10 illustrates the lubrication types with the design parameters 
8 
nd transparency for better understanding. The following specifies 

he five cases referring to the lubrication geometries in Fig. 10 . 

1) Case 1: small 1 orifice, closed-end seal, mixed lubrication, de- 

picted in Fig. 10 (a) 

2) Case 2: large 1 orifice, closed-end seal, flooded lubrication, de- 

picted in Fig. 10 (a) 

3) Case 3: 1 nozzle, open-end seal, direct lubrication, depicted in 

Fig. 10 (b) 

4) Case 4: 3 nozzles, open-end seal, direct lubrication, depicted in 

Fig. 10 (c) 

5) Case 5: LEG, closed-end seal, mixed lubrication, depicted in 

Fig. 10 (d) 

Table 1 shows that the open-end condition has a seal height 

 h s ) approximately an order of magnitude larger than the close-end 

ondition. The seal height values divided by the shaft radius ( R s ) 

re provided for all oil injection types. Figs. 9 and 10 show highly 

agnified depictions of the seal heights for better visualization. 

The CNNs are trained for the five oil injection cases to investi- 

ate the groove thermal mixing effect and its heat transfer effect 

n the rotor-bearing system when the surrogate groove model is 

ombined with the rotor-bearing model. Table 1 summarizes the 

nput parameters and dataset numbers for the various oil injection 

ases. The nine (9) parameters used as the neural network input in 

able 1 are selected from the parameter’s sensitivity analysis [18] , 

nd the parameters are depicted in Fig. 10 (a). The neural network 

nput ranges are determined based on the frequency of use in ac- 

ual practical applications [18] . For each oil injection case, the in- 

ut space is designed by the combination of the Full Factorial and 

atin Hypercube Sampling methods for the 1536 training data set 

eneration, and the 658 test data sets with randomly extracted in- 
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Fig. 10. Various types of oil injection with input parameters and transparency; (a) one orifice with input parameters, (b) one nozzle, (c) three nozzles, (d) leading edge 

groove (LEG); ∗D g : nozzle or orifice diameter [m], P t : total pressure [Pa], L b : bearing length [m], U s : shaft surface velocity [m/s], P in : groove inlet pressure [Pa], T in : groove 

inlet temperature [C], h in : groove inlet height [m], P out : groove outlet pressure [Pa], h out : groove outlet height [m], R s : shaft radius [m], h s : seal height [m]. 

Table 1 

Input parameter, data set number, performance on designed convolutional autoencoder neural networks. 

Oil Injection Type Case 1 Case 2 Case 3 Case 4 Case 5 

Oil Injection Number 1 1 3 1 1 

Direct or Flooded? Mixed Flooded Direct Direct Mixed 

Constant Input Parameters 

D g / W g 0.169 0.357 0.282 0.171 0.160 

h s / R s 0.0084 0.0063 0.0500 0.0500 0.0049 

C l,b / R s 0.0015 0.0015 0.0015 0.0015 0.0016 

Neural Network Input Parameters and its Range 

R s [mm] 25.4–76.2 

L b / R s 0.4–1.0 

U s [m/s] 15–95 

P t [MPag] 0.01–0.7 

P in [MPag] 0–1.2 

P out [MPag] 0–0.65 

h in / C l,b 0.3–2.2 

h out / C l,b 0.3–2.2 

T in [C] 50–120 

CFD Image Data Number in Designed Input Space 

Training Data (FF) 512 512 512 512 512 

Training Data (LHS) 1024 1024 1024 1024 1024 

Test Data (Random) 658 658 658 658 658 

Total Data 2194 2194 2194 2194 2194 

Performance of Trained CNN 

R-squared (train data) 0.995 0.997 0.996 0.997 0.996 

RMSE (train data) 0.0252 0.0226 0.0203 0.0185 0.0253 

R-squared (test data) 0.987 0.988 0.985 0.992 0.984 

RMSE (test data) 0.0406 0.0427 0.0393 0.0293 0.0462 

∗FF: Full Factorial (2 level), LHS: Latin Hypercube Sampling, W g : groove width, RMSE: Root Mean Squared Error 

9 
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Fig. 11. Calculation procedure for static performance and dynamic coefficient pre- 

diction of a tilting pad journal bearing. 
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ut combinations are produced for the validation and generaliza- 

ion check of the trained neural network. 

.2. Deep convolutional autoencoder performance 

The performance of the trained CNN can be estimated by the 

-squared and Root Mean Squared Error (RMSE) for the regression. 

able 1 shows that the CNN of all cases shows the excellent re- 

ression performance, which has the R-squared value near one and 

 low RMSE for both training and test data set. The CNN needs 

o have good generalization ability without an overfitting problem. 

he test dataset does not participate in the training process, and 

he test dataset can be commonly used to check the generaliza- 

ion status of the trained CNN. Thus, the non-dimensional temper- 

ture distributions at the pad leading edge of the fluid-film are 

ompared for the CFD and CNN predictions, using the randomly 

xtracted test data, as shown in Figs. 12-16 . The non-dimensional 

emperature is defined in Eq. (1) . Fig. 12 (a) shows the represen- 

ative 2D temperature distribution with the one oil injection, and 

t is drawn to describe the information needed in the contours 

epresented in Figs. 12-16 . The half-symmetric temperature con- 

our with respect to the x-y plane is plotted, since the symme- 

ry boundary condition is applied for the CFD groove model. The 

op and bottom horizontal edges are the shaft and pad surfaces at 

he pad leading edge of the fluid film, respectively. The right verti- 

al edge indicates the side outlet. The value near one (red) means 

hat the fluid is not cooled when passing through the groove re- 

ion, and the zero value (blue) represents the strong mixing with 

he cooled supply oil. 

Fig. 12 (a) shows that the oil near the supply oil inlet is pene-

rated to the shaft surface with the strong cooling of the hot oil 

ransported from the circumferential groove inlet. Also, it is con- 

rmed that the oil temperature is decreased near the side outlet. 
10 
his is because some portion of the flow from the supply oil inlet 

s discharged to the side outlet while mixing with the hot oil. The 

emperature in the region between the oil injection and side out- 

et of the temperature contour is mainly affected by the ratio of the 

roove circumferential inlet film thickness to the groove circumfer- 

ntial outlet film thickness, since there is no penetrating flow and 

he heat is transported by the circumferential heat advection term 

ith negligible conduction effect. 

The non-dimensional temperature distribution predicted in the 

roove model with one nozzle injection shows a similar tempera- 

ure distribution pattern, as represented in Figs. 12 , 13 , 14 , and 16 .

n the case of three nozzles, the additional oil penetration region 

s generated, as shown in Fig. 15 . It is interesting to compare the 

ooded lubrication in Fig. 13 and direct lubrication in Figs. 14 and 

5 . It is apparent that the oil penetration in the direct lubrication 

s stronger than that in the flooded lubrication, and this gives the 

etter cooling ability in the direct lubrication, as mentioned ear- 

ier. Also, suppose the orifice or nozzle size is small enough de- 

pite equipping with the close-end seals such as Case 1 ( Fig. 12 )

nd Case 5 ( Fig. 16 ). In that case, it is confirmed that the intense

il penetration can be generated due to its higher dynamic pres- 

ure at the supply oil inlet. 

As seen in Figs. 12-16 , the non-dimensional temperature distri- 

ution is distinctly different according to the input parameters as 

llustrated in Fig. 10 (a), and it stresses the importance of consid- 

ring the 2D, pad inlet temperature distribution. In addition, the 

eep convolutional autoencoder neural network predicts the tem- 

erature distribution accurately when compared to the CFD predic- 

ions, as shown in Figs. 12-16 . These are very intriguing results be- 

ause the CNN shows excellent performance for the test data, prov- 

ng its ability as the surrogate model and the generalization capa- 

ility. In addition, the CNN calculates the non-dimensional temper- 

ture distribution at the pad leading-edge of the fluid film within 

.e-6 s, which is 9 orders of magnitude faster than the CFD com- 

utation which takes around 1–2 h. This enables the practical im- 

lementation of the CNN as a sub-model in the overall dynamic 

otor-bearing model, yielding significant increase in model accu- 

acy, with little increase in computation time. 

.3. Model validation 

The trained CNN is combined with the rotor-bearing model 

o investigate the 2D temperature distribution effect at the pad 

eading-edge, and the validity of the proposed model is verified 

n this section. The groove region is modeled by the CNN trained 

ased on CFD data, and the fluid film on the pad regions is simu- 

ated through the Reynolds equation. The Reynolds model though 

implified, is highly accurate for thin-film modeling, as confirmed 

y comparing with full CFD model results. Yang and Palazzolo [10–

2] developed the full CFD model for a rotor-bearing system, and 

he input parameters and results in the study are used for the val- 

dation. The specific input parameter values are given in Table 2 , 

nd Fig. 8 illustrates these geometric parameters. The lubrication 

ype is identical to Case 1 represented in Section 3.1 , and so the

NN for Case 1 is applied in the proposed model. The number of 

lements in the computational domain, as depicted in Fig. 2 (b), is 

5,920, and is selected based on a thorough grid test. 

A Reynolds-based model is used to compare results obtained 

ith the groove model developed by Suh et al. [3] or Abdollahi 

t al. [4] , the proposed (deep learning groove mixing) model and 

he full CFD model. The method suggested by Abdollahi et al. [4] , 

equires the supply oil flow rate as an input, so an identical supply 

ow rate is applied in the CFD simulations. 

Fig. 17 compares results for static and dynamic bearing param- 

ters, utilizing the various modeling approaches. The eccentricity 

atio is defined by e / C l,b , which is a measure of shaft displacement
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Fig. 12. Prediction of non-dimensional temperature distribution at pad leading edge – randomly extracted test data (No. 1537 - 2194) comparison for small 1 orifice, close- 

end seal (Case 1); (a) figure structure description, (b) CFD, (c) deep convolutional autoencoder (CNN). 

Fig. 13. Prediction of non-dimensional temperature distribution at pad leading edge – randomly extracted test data (No. 1537 - 2194) comparison; (a) CFD, (b) deep convo- 

lutional autoencoder (CNN); large 1 orifice, close-end seal (Case 2). 
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ue to the static applied load ( w ), where eccentricity ( e ), and bear-

ng clearance ( C l,b ) are represented in Fig. 8 . The dynamic coeffi- 

ients, including the stiffness and damping coefficients, are used to 

valuate the stability and critical speeds of a rotor-bearing model, 

nd the method to calculate the dynamic coefficients is presented 

n previous studies [10–11] . 

The results in Fig. 17 (b)-(e) demonstrates that conventional ap- 

roaches, employing groove mixing parameters (mixing coefficient 

r groove efficiency parameter), may yield a wide range of pre- 
11 
icted static or dynamic parameter values depending on the as- 

umed values of these parameters. This uncertainty lessens the re- 

iability of these approaches. In contrast, the groove model utiliz- 

ng deep learning does not require assuming a value for a groove 

ixing parameter. Furthermore, the proposed model, which com- 

ines the Reynolds approach with the deep learning groove mixing 

odel, has excellent agreement with full CFD models, confirming 

he model’s reliability via simulation studies. The results of this ap- 

roach are further presented in Section 3.4 . 
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Fig. 14. Prediction of non-dimensional temperature distribution at pad leading edge – randomly extracted test data (No. 1537–2194) comparison; (a) CFD, (b) deep convolu- 

tional autoencoder (CNN); 1 nozzle, open-end seal (Case 3). 

Fig. 15. Prediction of non-dimensional temperature distribution at pad leading edge – randomly extracted test data (No. 1537–2194) comparison; (a) CFD, (b) deep convolu- 

tional autoencoder (CNN); 3 nozzles, open seal (Case 4). 

Fig. 16. Prediction of non-dimensional temperature distribution at pad leading edge – randomly extracted test data (No. 1537–2194) comparison; (a) CFD, (b) deep convolu- 

tional autoencoder (CNN); LEG, closed seal (Case 5). 
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The proposed model is compared with the test data in [19] for 

xperimental validation. The test was conducted for a tilting 

ad journal bearing with the LEG (Leading Edge Groove) lu- 

rication type, identical to Case 5 described in Section 3.1 . 

he bearing has five pads, and the shaft diameter and bear- 
12 
ng length are 101.587 mm and 60.325 mm, respectively. The 

ther input parameter values are provided in the prior study 

12] . As shown in Fig. 18 , the eccentricity ratio, bottom pad trail-

ng edge temperature, and dynamic coefficients are compared 

etween the proposed model and test data. The results pre- 
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Fig. 17. Comparison between full CFD [18] and Reynolds approaches; (a) eccentricity ratio, (b) averaged shaft temperature, (c) peak pad temperature at mid-span, (d) non- 

dimensional stiffness ( K yy ), (e) non-dimensional damping coefficient ( C yy ). 

Fig. 18. Comparison between experiment and the proposed theoretical model; (a) eccentricity ratio and bottom pad trailing edge temperature, (b) stiffness ( k yy ) and damping 

( c yy ) coefficients. 
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icted by the proposed model agree well with the experimental 

ata. 

.4. Thermal analysis of rotor-bearing model 

This section provides thermal analysis results of the rotor- 

earing system for the various oil injection types (Case 1 – Case 

) and supply oil flow rate (35 LPM, 52.5 LPM) when applying the 

eynolds-based rotor-bearing model combined with the surrogate 

roove model. The input parameters are identical for all cases, as 

rovided in Table 2 . The total supply pressure in the CNN is de-

ermined iteratively to obtain the desired supply oil flow rate [18] . 

ig. 19 shows the comparison results for the various oil injection 

ypes. 

The eccentricity ratio decrease confirms the lift of the shaft 

ith increased operating speed, due to the strengthened converg- 
13 
ng wedge effect in the thin-film, as shown in Fig. 19 (1). The ec-

entricity ratio is nearly insensitive to the oil injection lubrication 

ypes. Accurate prediction of temperature is imperative. For exam- 

le, the babbitt surface on the bearing can typically only endure 

emperatures below 120 [C], and the rapid increase or circumfer- 

ntial difference of shaft temperature can induce rotor vibration 

nstability. Fig. 19 (2) and (3) confirm that shaft and pad tempera- 

ures are highly sensitive to the various oil injection types. There- 

ore, usage of the proposed CNN groove model is important, since 

onventional mixing parameter models may yield widely varying 

redictions depending on the parameter values that are assumed. 

The shaft and pad temperatures increase with operating speed 

ue to the higher viscous heat generation. From the averaged shaft 

nd peak pad temperature results in Fig. 19 (2) and (3), the direct 

ubrication with open-end seals shows the best cooling ability for 

he shaft and pads. In contrast, the oil injection types with close- 
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Fig. 19. Eccentricity ratio and averaged shaft temperature for various injection types; (a) 35 LPM, (b) 52.5 LPM; (1) eccentricity ratio, (2) averaged shaft temperature [C], (3) 

peak pad temperature at mid-span [C]; Case 1: small 1 orifice-closed seal, Case 2: large 1 orifice-closed seal, Case 3: 1 nozzle-open seal, Case 4: 3 nozzles-open seal, Case 

5: LEG-closed seal. 

Table 2 

Input parameters for rotor-bearing system thermal analysis [12] . 

Parameters Value 

Shaft Radius, R s [mm] 50.8 

Bearing Length, L b [mm] 50.8 

Bearing Clearance, C l,b [mm] 0.0749 

Pad Thickness, t p [mm] 12.7–15 (at pivot) 

Pad Arc Length, l p [degree] 60 

Applied Load, w [N] 5000 

Preload, m pr 0.5 

Operating Speed, s [kRPM] 3–15 

Outside H.T.C., h ∞ [W/m 

2 K] 50 

Ambient Temperature, T ∞ [C] 30 

Supply Oil Temperature, T sup [C] 40 

Pad Flexible Modes Number 1–20 

Lubricant type ISO 32 

Material of Solid Domains Steel 

∗H.T.C.: Heat transfer coefficient 
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nd seals heat up the shaft and pads considerably. Interestingly, 

he small orifice reduces the shaft and pad temperatures more 

han that of the large orifice because of the intense oil penetra- 

ion effect in the groove with the small orifice. The cooling of the 

olid domains contributable to the groove region mixing can be 

trengthened by increasing the supply flow rate, as represented in 

ig. 19 (a) and (b). If a LEG is utilized with the close-end seals, its

ooling ability is ineffective, as shown in Fig. 19 (2) and (3), which 

s similarly observed in the experimental study [22] . 

Fig. 20 shows the effect of oil injection type on the bearing 

tiffness and damping constants, which are critical parameters for 

etermining rotordynamic stability and critical speeds. The dy- 

amic coefficients tend to increase with decreased film thickness 

11] . As seen in Fig. 22 (a), increased thermal expansion at higher 

perating speed makes the fluid-film thinner, yielding higher stiff- 
14 
ess and damping coefficients. As shown in Fig. 22 (a), the in- 

reased thermal expansions at higher operating speed makes the 

uid-film thinner. This yields higher stiffness and damping coeffi- 

ients. As shown in Fig. 22 (b) and (c), the averaged film thickness 

eductions caused by the pad and journal’s thermal expansion are 

ore significant at higher operating speeds. In contrast, the strong 

ooling effect of oil injection, like direct lubrication with the open- 

nd seals, decreases the thermal expansions of the shaft and pads, 

esulting in lower stiffness and damping coefficients. It is notable 

hat the supply flow rate does not have a significant effect on the 

ynamic coefficients, as shown by comparing Fig. 20 (a) and (b). 

Fig. 21 represents the extruded computational domains and 3D 

emperature distribution when the shaft rotates at 15,0 0 0 RPM 

Case 1). The proposed model is compared to the conventional ap- 

roaches with mixing coefficients 0.4 and 1.0. It is important to un- 

erstand the heat transfer mechanism for reliable thermal analysis 

f the rotor-bearing system. The viscous heating produces the pri- 

ary heat in the thin film, and the generated heat is transported 

n the circumferential direction by the rotating shaft while diffus- 

ng the heat to the shaft and pads. The shaft and pad outer sur- 

aces are exposed to ambient conditions, and the shaft and pads 

re cooled via convective heat transfer. The advection heat transfer 

n the radial direction is negligible in the fluid film. Advection heat 

s transported in the circumferential direction, and the groove mix- 

ng with the cold supply oil cools down this hot oil flowing from 

he previous pad’s trailing edge. Although mixing in the groove 

egion is a localized effect, it can significantly impact the overall 

D temperature distribution of the rotor-bearing system because of 

he fast rotating shaft (large, circulating circumferential advection 

eat). For instance, the temperature distributions are very different 

or the groove mixing models, as shown in Fig. 21 . 

The proposed model that employs the deep learning groove 

ixing model predicts the temperature contour reasonably, as 
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Fig. 20. Non-dimensional dynamic coefficients for various injection types; (a) 35 LPM, (b) 52.5 LPM; (1) non-dimensional stiffness coefficient ( K yy ), (2) non-dimensional 

damping coefficient ( C yy ),; Case 1: small 1 orifice-closed seal, Case 2: large 1 orifice-closed seal, Case 3: 1 nozzle-open seal, Case 4: 3 nozzles-open seal, Case 5: LEG-closed 

seal. 

15 
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Fig. 21. 3D Temperature distribution at 15,0 0 0 RPM (Case 1, 35 LPM); (a) rotor-bearing’s extruded view, (b) deep learning groove mixing, (c) 1.0 mixing coefficient, (d) 0.4 

mixing coefficient. 

Fig. 22. Net averaged film thickness (a) and the decreases in film thickness due to pad (b) and journal (c) thermal expansions. 
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surface. 
hown in Fig. 21 (b). The shaft temperature at the bearing mid- 

pan is lower because of the penetration of the supply oil to the 

haft surface. Also, the other shaft temperatures in the bearing re- 

ion are higher. This is because the thermal mixing effect is minor 

ear the shaft surface, except for the oil injection region, as rep- 

esented in Fig. 12 (b) and (c). Moreover, the temperature solutions 

n Fig. 21 (b) have similar distribution with the full-CFD results pre- 

ented in [10] . The axisymmetric journal temperature distribution 

n the new model follows the well-established convention for de- 

ermining stiffness and damping. 
16 
Fig. 23 shows the 3D temperature contour of the rotor-bearing 

ystem for the five oil injection cases treated in this study. It 

s clearly observed that the direct lubrication with the open-end 

eals, as shown in Fig. 23 (c) and (d), has superior cooling ability 

ince the supply oil is most effectively mixed with the hot oil, as 

onfirmed in Fig. 13 (2) and 15(1). As shown in Fig. 23 (a) and (e), it

s seen that a groove with a small diameter orifice (or nozzle) and 

lose-end seal shows considerable temperature variation in the ax- 

al direction, due to the intense supply oil penetration to the shaft 
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Fig. 23. 3D Temperature distribution with 35 LPM supply oil flow and 15,0 0 0 RPM; (a) Case 1: small 1 orifice-closed seal, (b) Case 2: large 1 orifice-closed seal, (c) Case 3: 

1 nozzle-open seal, (d) Case 4: 3 nozzles-open seal, (e) Case 5: LEG-closed seal. 
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. Conclusion 

This paper presented a novel thermal mixing model for a tilt 

ad journal bearing, via a deep convolutional autoencoder trained 

ith numerous CFD model predictions. The groove region of the 

ilt pad bearing consists of the oil supply inlet (orifice or nozzles), 

oving-wall (rotating shaft), circumferential groove inlet and out- 

et, and axial side outlets. The groove’s thermal model is utilized to 

redict the temperature distribution at the circumferential groove 

utlet (pad leading edge of fluid-film) in the rotor-bearing system. 

The groove thermal mixing model in conventional approaches 

1–4] has significant pitfalls that ignore the 2D temperature distri- 

ution effect, and employ uncertain parameters such as the mixing 

oefficient and groove efficiency parameter. The CFD-based rotor- 

earing model, which solves the full Navier-Stokes equation for the 

uid-film domain, provides an alternative approach. Its shortcom- 

ng though is prohibitive computation time when directly embed- 

ed into a rotor bearing system model. Thus, in this study, the 

roposed Reynolds-based rotor-bearing model, which solves the 

eynolds equation with respect to the fluid-film domain without 

oss of prediction accuracy, was combined with the trained deep 

onvolutional autoencoder that acts as the surrogate groove model. 

he detailed modeling methodology was elaborated in Section 2 . 

Five oil injection cases were treated in this research, including 

irect (nozzle with open-end seal) and flooded (orifice with close- 

nd seal) lubrication. The CNNs as the surrogate groove model 

ere trained for each oil injection case based on CFD-generated 

ata. The input design space of the training data set was de- 

ived from the combinations of the full factorial and Latin Hy- 

ercube Sampling method. The test dataset was generated from 

andomly extracted input combinations. The trained CNNs through 

eep learning showed excellent regression performance for the 

raining and test dataset when comparing the CNN and CFD pre- 

ictions for the non-dimensional 2D temperature distribution at 

he circumferential groove outlet. 
17 
The various temperature distribution patterns emphasize the 

mportance of including the 2D pad inlet temperature distribu- 

ion since it can directly affect heat transfer to the shaft and 

ad. The effectiveness of combining the Reynolds model with the 

rained CNN has been verified by comparing results with a full 

FD model [12] , for a rotor-bearing system. The proposed model 

nd CFD model showed good agreement for the eccentricity ratio, 

haft temperature, pad temperature, and dynamic coefficients. In 

ddition, the comparison between the proposed model and exper- 

mental data [19] proved the validity of the suggested model. 

The proposed and conventional model results were compared 

or thermal analysis of the rotor-bearing system with five oil injec- 

ion cases. The results showed the direct lubrication with open-end 

eals has the superior cooling capability for the rotor-bearing sys- 

em. The simulation results confirmed that the conventional groove 

odel has significant uncertainty depending on the assumed mix- 

ng coefficient or groove efficiency parameter, and consequently 

uestionable 3D temperature distribution can be predicted for the 

ntire rotor-bearing system. This illustrates the importance of the 

roposed model, which provides a reliable temperature distribu- 

ion effect at the pad leading edge of the fluid film. The proposed 

odel makes it possible to accurately and efficiently conduct a 

hermal analysis of a rotor-bearing system, reflecting the charac- 

eristics of the various oil injection types. 
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