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Implementation With Machine
Learning
Reynolds based thermo-elasto-hydrodynamic (TEHD) simulations of tilting pad journal
bearings (TPJBs) generally provide accurate results; however, the uncertainty of the
pad’s leading edge thermal boundary conditions causes uncertainty of the results. The
highly complex thermal-flow mixing action between pads (BPs) results from the oil
supply nozzle jets and geometric features. The conventional Reynolds approach employs
mixing coefficients (MCs), estimated from experience, to approximate a uniform inlet tem-
perature for each pad. Part I utilized complex computational fluid dynamics (CFD) flow
modeling to illustrate that temperature distributions at the pad inlets may deviate strongly
from being uniform. The present work retains the uniform MC model but obtains the MC
from detailed three-dimensional CFD modeling and machine learning, which could be
extended to the radially and axially varying MC case. The steps for implementing an arti-
ficial neural network (ANN) approach for MC regression are provided as follows: (1) utilize
a design of experiment step for obtaining an adaptable training set, (2) conduct CFD sim-
ulations on the BP to obtain the outputs of the training set, (3) apply an ANN learning
process by Levenverg–Mardquart backpropagation with the Bayesian regularization, and
(4) couple the ANN MC results with conventional TEHD Reynolds models. An approximate
log fitting method provides a simplified approach for MC regression. The effectiveness of
the Reynolds TEHD TPJB model with ANN regression-based MC distributions is confirmed
by comparison with CFD based TEHD TPJB model results. The method obtains an accu-
racy nearly the same as the complete CFD model, but with the computational economy of a
Reynolds approach. [DOI: 10.1115/1.4047751]

Keywords: bearing design and technology, fluid film lubrication, hydrodynamic
lubrication, journal bearings, thermoelastohydrodynamic lubrication

1 Introduction
Multiphysics theories for tilting pad journal bearing (TPJB) mod-

eling have been investigated during the past six decades, as dis-
cussed in Part I. As part of that effort a highly approximate
mixing theory was developed to quantify the effects of the
thermal phenomena between pads (BPs) on the pad inlet tempera-
ture. The limitations of the mixing theory in the Reynolds model
were discussed in Refs. [1–5]. Yang and Palazzolo [4,5] presented
an alternative approach employing computational fluid dynamics
(CFD) thermal-flow modeling throughout the TPJB, including the
particular BP regions. Their approach is validated in Part I by com-
parison with test results from the literature. Although highly accu-
rate, the practicality of using the CFD TPJB approach in a design
setting is constrained by its large computation time requirements.
Therefore, this paper develops a means to improve the accuracy
of the computationally quicker Reynolds modeling approach, utiliz-
ing improvements in pad inlet temperature prediction, derived from
CFD modeling of a large set of representative TPJBs.

Table 1 contains a shortlist of mixing theory developments. The
non-dimensional parameter Ya is newly defined in this study and is
the ratio of the BP inflow and outflow (Qin/Qout). It will be shown
that Ya is the dominant parameter influencing the mixing coefficient
(MC), and previous MC methods can be expressed in terms of Ya.
Ettles [6] introduced the first form of the MC (constant MC) and
compared it to published results for thrust bearings. As shown in
Fig. 1, the MC was constant over the entire Ya range, and it has a
large uncertainty (MC 0.4–1.0). Mitsui et al. [8] improved the
MC prediction (upstream MC) with a mass and heat balance
approach defining the MC on the upstream flow. However, substan-
tial errors may still occur (MC >1, Fig. 1). Pinkus [23] presented an
approach (upstream MC) identical to Mitsui et al. [8] by applying
the MC on the upstream flow.
Suh and Palazzolo’s [19] hybrid MC method combined the cons-

tant MC and upstream MC methods to overcome a weakness
encountered in Mitsui et al. [8]. The method still contains consider-
able uncertainty (MC 0.4–1.0). The present approach uses a log
fitting method versus Ya to obtain a more accurate MC, ranging con-
tinuously in (MC0.4–1.0). The basis of the approach lies primarily in
matching the Reynolds andCFD approach results, utilizing CFD as a
high accuracy benchmark for the Reynolds model. Thousands of
CFD simulations were performed in developing the log fitting
method, as indicated in Fig. 1. The log fitting method can be easily
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incorporated into Reynolds based TPJB software for solving practi-
cal problems. A second approach for obtaining MC utilizes an arti-
ficial neural network (ANN) for further accuracy improvement.
Researchers [1–3] have developed non-MC based predictions for

pad leading edge temperatures by considering detailed BP flows.
Hagemann and Schwarze [2,3] proposed a simplified BP model
composed of a circular arc with effective thermal boundary condi-
tions located at the radius of the shaft, such as an effective supply
temperature, mean upper BP temperature, and eddy conductivity.
Only the fluid film domain for the lowest BP is modeled, and it is
coupled to the adjoining pad film domains. Thus, the pad tempera-
ture boundary condition at the pad leading and trailing edges is not
required since the modeling domain includes the BP and the pad
film domains for the pads that bound the BP.
However, temperatures along the upper surface boundary of the

BP domain must be prescribed as an effective supply temperature.
Also, the upper BP boundary condition is dependent on whether the
flow is supplied or discharged. This method makes calculations

somewhat complicated due to dependence of the upper boundary
condition on the flow direction, and to the many approximate
assumptions. It is also difficult to accurately model the three-
dimensional (3D) flow characteristics due to the neglect of the
thermal coupling of all BPs.
Abdollahi and San Andrés [1] considered two flow conditions

between pads with the assumptions that the portion of hot oil
with supply oil (a) is discharged into side outlets (no recirculation
flow) or (b) recirculates between pads (no side leakage flow). For
calculating the pad inlet temperature, they applied a heat balance
on each condition for the BP, with a newly defined mixing effi-
ciency parameter. Two unknown side leakage and recirculating
temperatures are needed for each heat balance in order to consider
such flow conditions. The unknown temperatures are obtained from
a heat balance on the upper BP. References [1,2] utilize a bulk flow
model, which does not include complex 3D thermal-flow effects.
Their approach also defines other uncertain parameters like
mixing efficiency parameter, side leakage temperature, and recircu-
lating temperature which may vary according to the flow regime,
film thickness, bearing geometry, and operating condition.
In comparison, the present study shows that the MC is highly and

in some cases non-linearally, dependent on various operating and
geometry parameters. Therefore, the MC prediction model has to
include these parameters and be derived by solving the Navier–
Stokes equations, including the fully 3D mixing phenomena
between pads. Artificial intelligence (AI) provides a highly reliable
means for accurate prediction of pad inlet temperature, based on
large dimensional training sets obtained from the CFD solutions
and design of experiments (DOEs). The ANN machine learning
technique has robust capability independent of the degree of nonlin-
earity considered [24,25]. AI machine learning’s increasing popu-
larity is due to the rapid development of computational resources,
improved algorithms, and widespread applications. AI has recently
been applied in the optimization of plasmonic thin-film organic
solar cells [25], stock market price prediction [26], urban growth
[27], response prediction of large buildings [28], pavement struc-
tural evaluation [29], breast cancer type prediction [30], analysis
of water quality in estuaries [31], etc.
Themain contribution of this study is an advancedmixing temper-

ature prediction method that utilizes ANN trained from large data-
bases of CFD results. A DOE method is proposed, which is
tailored for MC prediction. The Levenverg–Mardquart backpropa-
gation (LMB) [32–34] algorithm with Bayesian regularization [35]
is employed for training the ANN. Finally, the ANN-based method
is combined with the conventional Reynolds model to obtain the
machine learning mixing coefficient (MLMC) Reynolds model. Its
accuracy is verified by comparing it with the full thermo-elasto-
hydrodynamic (TEHD)-CFD model developed in Part I.

2 Overview of the MLMC Reynolds Model
Figure 2 shows a flow diagram of the MLMC Reynolds, TPJB

modeling approach. Here, machine learning acts as a regression
model for MC prediction between pads, within practical ranges of
selected input parameters. ANN is utilized, and its artificial
neurons are trained to search for adaptable weighting. LMB with
Bayesian regularization is implemented in an in-house code and

Fig. 1 Comparison of previous MC methods

Fig. 2 Overview of the MLMC Reynolds process

Table 1 Previous and proposed MC methods

Researchers Method MC(|Ya|) References

Ettles [6] Constant MC MCK [7]
Mitsui et al. [8] Upstream MC MCK|Ya| [9–18]
Suh and Palazzolo [19] Hybrid MC min [|Ya|, MCK] [20–22]
(♣) Present Log MC min [MCK1ln(|Ya|)+MCK2, 1] –
(♣) Present ANN MC – –

Note: MCK is an empirically assumed MC value.
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is applied to train the ANN from the training and test data sets gen-
erated in the CFD model. The DOE step combines full factorial and
Latin hypercube sampling (LHS) [36,37] to produce a suitable input
design space for the regression. Several thousand cases from the
input design space are simulated using 3D CFD models for BP
MC prediction. The model geometry and meshing are automatically
updated for different input parameter cases. This performed with a
PYTHON-based code (Job Script) in the CFD model, to improve com-
putational efficiency. Furthermore, the full input parameter domain
is divided into several tens of calculation nodes for parallel compu-
tation, using the computational resources of the Texas A&M High-
Performance Research Computing Center (HPRC).
Figure 3(a) illustrates the rotor-bearing system, and Fig. 3(b)

illustrates the BP region. The CFD model’s primary focus is on
the BP region for generating training and test data sets for obtaining
ANN predicted MC for each BP. The DOE method is implemented
by the MATLAB DOE functions. The commercial CFD code (CFX) is
used to maintain consistency with the verified full CFDmodel of the
TPJB rotor-bearing system in Part I. The trained ANN provides the
MC and other outputs and is embedded in the Reynolds model
solver. The ANN acts as a sub-function with the BP geometric
parameter and operating condition as inputs, and MC, shear
stress, pressure drop, and supply oil flowrate as outputs. The MCs
from the ANN are iteratively calculated in the transient solver of
the MLMC Reynolds model during the computation, with addi-
tional details described in Sec. 6.

3 Design of Experiment
The DOE step forms the design space, which is crucial for robust

performance of the regression model. The design space implies the
space within the range of the input parameters, and the design points
indicate each input parameter data set. Full factorial with three-level
factors, as shown in Fig. 4(a), provides globally uniform design
points which facilitates accurate regression. However, this requires
a massive amount of design points according to the increase of the
factors (input parameter number). For example, it needs 3n design
points for n factors, i.e., it requires 19,683 design points for nine
factors, which is the number of input parameters utilized in this
research for the MC prediction. Thus, it is computationally burden-
some to apply the three-level full factorial approach to large input
parameter sets, when considering the CFD computation time.
An alternative approach with far fewer design points is a simple

two-level full factorial model, as illustrated in Fig. 4(b). However,
it has a reduced accuracy region near the middle of the full design
space, and a reduced capacity for capturing non-linear dependence
of the MC on input parameters. Thus, a DOE combination

methodology of the two-level full factorial and the LHS with
minimax spacefilling design is proposed. The reason for not employ-
ing solely LHS is because, by itself, it can have poor accuracy near
the outer surface. The LHS approach generates design points ran-
domly and uniformly over the full design space, and the design
point number of the LHS is specified to be identical with that of
the two-level full factorial. This method can overcome the pitfall
of the conventional approach and reduce the number of design
points relative to three-level full factorial. For instance, 1024
design points are enough for the nine input parameters when using
the proposed method, while the full factorial requires 19,683
design points. Figure 4(c) shows the design space which is produced
by the combination DOE of the two-level full factorial and LHS. The
advantage of the combination DOE method is demonstrated in Sec.
7.2, and the case of the two-level full factorial, and two times LHS of
the number of the full factorial in Fig. 4(d ), is also investigated in
Sec. 7.2.

4 Computational Fluid Dynamics Modeling
for “Between Pads” Thermal-Flow
Mixing coefficients relate the pad inlet (BP outlet) temperature to

the supply oil temperature and the outlet (BP inlet) temperature of
the previous pad. For the present analysis, define the “area MC” as

MC ≡
Tout − Tsup
Tin − Tsup

(1)

where the mass flow weighted, area averaged temperature is defined
as

T =

��
ρucpTdA��
ρucpdA

(2)

for both Tout and Tin. Likewise define the axially varying, or simply
“axial MC” as

MC(z) ≡
T̂out(z) − Tsup

T̂ in(z) − Tsup
(3)

where the mass flow weighted, radial averaged temperature is
defined as

T̂(z) =

�
ρucpTdr�
ρucpdr

(4)

for both T̂out and T̂in. The forms (1) and (3) suggest that the
“area” MC and “axial” MC are in effective non-dimensional

Fig. 3 BP configuration of the TPJB: (a) full domain and (b) trained BP region
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measures of the mass flow weighted, area, and radially averaged,
pad inlet (BP outlet) temperatures. These non-dimensional forms
are appropriate for regression via the ANN machine learning
approach.
A k–ω based shear stress transport (SST) turbulence model with a

gamma transitional model, and energy equation with temperature-
dependent, variable viscosity are employed to simulate the thermal-
flow. A two-phase mixture model is also included for the case
where cavitation occurs, with pressures below the saturation pres-
sure of the oil.
Figure 5 shows all BP dimensions and boundary conditions. The

constant supply oil total pressure is applied at face (1). The pressure

at the BP inlet (3) and outflow (5) faces varies along the bearing
axial direction and is well represented by

Pin(z) =
3
2
Pin 1 −

z

L1

( )2
{ }

(5)

Pout(z) =
3
2
Pout 1 −

z

L1

( )2
{ }

(6)

where the mean pressure along the bearing axial direction is
defined by (P ≡ 1/L1 ×

�L1
0 Pdz), and where these functions are a

Fig. 5 BP dimensions and boundary conditions

Fig. 4 Proposed DOE approach which combines full factorial and LHS: (a) full factorial
(level 3), (b) full factorial (level 2), (c) full factorial (level 2)+LHS×1, and (d ) full factorial
(level 2)+LHS×2
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maximum at the symmetric face (6). The pressure at the BP side
outflow face (4) is held at ambient. The average pressures Pin

and Pout in Eqs. (5) and (6) are used as input parameters
(design points) of the machine learning, and the profiles in the
equations are prescribed in the CFD.
For the turbulence governing equations, a zero gradient condi-

tion is applied at the faces (1), (3), (4), and (5). For the energy
equation’s boundary condition, faces (1), (2), and (3) are pre-
scribed with the temperature 30 °C and the heat convection bound-
ary condition with 50 W/m2. The BP outer wall (6) is prescribed
with the heat transfer boundary condition (50 W/(m2 K), 30 °C).
However, the heat convection to the BP outer wall (6) is negligible
because its heat transfer is much lower than the flow’s advection
heat.
All possible input parameters in the regression model are listed in

Table 2, and are based on the BP dimensions and boundary condi-
tions in Fig. 5. Some parameters are non-dimensionalized to main-
tain similarity according to a change of journal radius. The standard
pad thickness tp is defined by 0.25Rs, and the standard radial bearing
clearance is also defined as Cl,b= (0.0749/50.8)Rs, where Rs is the
journal radius, and μf is the dynamic viscosity of the lubricant.
The term Us is the surface velocity of the shaft.
A grid test was carried out with the parameters in Table 3 to

check for grid independence before the CFD training set computa-
tion. A mesh of 27,675 elements (0.75 mm element size) shows suf-
ficient grid independence and is applied for producing training and
test data sets. This was based on prediction of the MC and the static
supply pressure.
Figure 6 shows the calculation process in CFD for creating the

training and test data sets. The proposed DOE creates the training
data set, and the test data set is made with randomly extracted
input parameters. The computation is performed after distributing
the total input parameter set into several tens of calculation nodes
(Nc) for obtaining results within a realistic time limit. Each Job
script controls all computation sequences, including updating the
input parameter set, generating geometry and meshing, and
solving the governing equations of the BP physics. This process
repeats until each calculation node completes its assigned input
data set (Ni), while building the result (outputs) files, including
MC, shear stress, and pressure data.

5 Machine Learning (Artificial Neural Network)
5.1 Levenberg–Marquardt Backpropagation Algorithm

With Bayesian Regularization. The data set utilized in the train-
ing process is referred to as the “training data set.” The critical part
for successful machine learning is to show consistent performance
no matter which training data set is utilized. The process of
accomplishing consistent performance is called generalization.
The most common reason for generalization failure is overfitting.
Various techniques have been developed to prevent the overfitting
problem. The Bayesian regularization [35] techniques were
adopted in this research. The test data set is used to check whether
overfitting occurs during the training process (cross validation),
and does not participate in the training process. It is merely used to
check the ANN performance with the training data set.
Figure 7 illustrates the overall ANN and highlighted connections

for neuron j. The ANN consists of an input layer, a hidden layer, and
an output layer. One hidden layer is contemplated. The calculation
process is divided into the forward and backward propagation, as
shown in Figs. 7(a) and 7(b), respectively. In the forward propaga-
tion process, the neuron’s net value Xk

j , output Y
k
j , and slope Skj are

stored, and then, the defined delta δko,j is obtained in the backward
propagation process. Throughout this process, the Jacobian matrix
is computed, and the LMB algorithm with the Bayesian regulariza-
tion is applied using the Jacobian matrix, during the iterative learn-
ing process.
The relation of the input and output for neuron j can be written as

Xk
j =

∑ni
i=1

wk
j,iy

k
j,i + wk

j,0 (7)

Yk
j = tanh (Xk

j ) (8)

where wk
j,i and ykj,i are the weighting factor and neuron input value,

respectively (i: input index of a neuron from 0 to ni, j: neuron index
from 1 to nj, and k: layer index from 1 to 2), and the wk

j,0 is the bias
weighting factor. The hyperbolic tangent in Eq. (8) is considered as
an activation function of the neuron. The Xk

j is the neuron’s net
value, and the Yk

j is the neuron’s output.
Regularization is the learning technique for the ANN to be gen-

eralized adaptably by minimizing the weighting factors, and Baye-
sian regularization [35] is applied for this purpose. The cost
function (objective function), which represents the ANN

Table 2 List of all input parameters P(i) for the BP region

No. Parameters No. Parameters

P(1) W1 P(10) Tsup
P(2) W2/(W1−Dh) P(11) Tin− Tw
P(3) L1/Rs P(12) Us

P(4) H1/tp P(13) Pt,sup

P(5) Dh/W1 P(14) Pin

P(6) Rs P(15) Pout

P(7) hs/Rs P(16) hin/Cl,b

P(8) H2/H1 P(17) hout/Cl,b

P(9) Tin P(18) μf

Fig. 6 Calculation process for CFD BP modeling of training set
from DOE

Table 3 BP input parameters (Table 2) values for the grid test

Parameter no. i Values Unit Parameter no. i Values Unit

P(1) 12 (deg) P(10) 45 (C)
P(2) 0.5 – P(11) 0 (C)
P(3) 0.5 – P(12) 60 (m/s)
P(4) 0.41 – P(13) 0.5 (MPa)
P(5) 0.21 – P(14) 0.25 (MPa)
P(6) 50.8 (mm) P(15) 0.25 (MPa)
P(7) 0.0084 – P(16) 1.0 –
P(8) 0.3 – P(17) 1.5 –
P(9) 80 (C) P(18) ISO32 –
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performance, is defined as

Fcost = β × SSE + α × SSW (9)

SSE = {e}T{e} (10)

SSW = {w}T{w} (11)

{e}= [e1|p=1, . . . , eno |p=1, . . . , e1|p=np , . . . , eno |p=np ]T , (no × np) × 1

(12)

{w}= [w1
1,0, w

1
1,1, . . . , w

1
1,ni , . . . , w

1
nj ,0, w

1
nj ,1, . . . , w

1
nj ,ni ,

w2
1,0, w

2
1,1, . . . , w

2
1,nj , . . . , w

2
no ,0, w

2
no,1, . . . , w

2
no,nj ]

T (13)

The term sum of squared weighting (SSW) factors in Eq. (11) is
added to the sum of squared errors (SSE) in Eq. (10), and the reg-
ulation parameters α and β are introduced. The error and weight
vectors are given in Eqs. (12) and (13), respectively. The p is the
index of the training data set from 1 to np. The weighting factor
(wk

j,i) and bias factor (wk
j,0) are utilized as the ANN’s activation

function parameters as in Eqs. (7) and (8), and it is determined
from the training process. The optimal α and β in Eq. (9) are
obtained from Ref. [35], as

α=
γ

2SSW
(14)

β =
NT − γ

2SSE
(15)

where NT is the total number of training data set (no× np), and it is
utilized in Eq. (15), (no× np) indicates the total number of training
data sets, where the number of training sets is (np), and the
number of outputs is (no). For instance, the number of training
data set (np) is 1536, and all outputs have no= 1 for the area-MC
ANN. The regularization parameters adjust the errors and weighting
factors during the training process. For instance, the training process
is performed to focus on reducing the errors if α≫ β and on decreas-
ing the weighting factors if β≪ α. The effective parameter γ is
obtained from

γ =NW − 2α × trace([H]−1) (16)

[H] ≃ 2β[J]T [J]+ 2α[I] (17)

where NW is the total number of weighting factors (ni × nj+ nj+ nj ×
no+ no). From the Gauss–Newton approximation, the Hessian
matrix [H ] can be expressed by Eq. (17) [35]. The gradient
vector of the objective function can be written by

{g}= 2β [J]T{e}+ 2α{w} (18)

{w}= {w ∗ }− (2β [J∗]T [J∗]+ 2(α+ μ)[I])−1{g∗} (19)

The combination coefficient μ is a parameter applied in the learn-
ing process, which is not needed to provide a specific value, and will
be discussed further in Sec. 5.2.
The Hessian matrix [H ] and gradient vector {g} are used to

update the weight factor vector {w} by the relation in Eq. (19),
where the superscript * means present iteration step. Equation
(19) represents the update rule of the LMB with the regularization
parameters.
The major role of the LMB is to determine the Jacobian matrix

[J ]. The Jacobian matrix consists of the derivative of the weighting
factors with regard to the output errors. The error is defined by
OUTCo−OUTNo, which is the difference of the desired output
value (OUTCo) and ANN output value (OUTNo), where o is the
output neuron index, from 1 to no. The desired output value is
obtained from the CFD simulation. The structure of the entire Jaco-
bian matrix is organized with the hidden layer column and the
output layer column for each training data set row. This insures
that the matrix order corresponds with that of the defined error
{e} and weight vector {w}

(20)

The matrix component’s ordering of the [Jhidp] and [Joutp] for the
pth training data set are given by

Fig. 7 ANN connection for neuron j: (a) forward propagation and (b) backward propagation
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[Jhidp] =

| ← neuron, 1 � | · · · | ← neuron, nj � |
∂e1
∂w1

1,0

∣∣∣∣∣
p

· · · ∂e1
∂w1

1,ni

∣∣∣∣∣
p

..

. . .
. ..

.

∂eno
∂w1

1,0

∣∣∣∣∣
p

· · · ∂eno
∂w1

1,ni

∣∣∣∣∣
p

· · ·

∂e1
∂w1

nj ,0

∣∣∣∣∣
p

· · · ∂e1
∂w1

nj ,ni

∣∣∣∣∣
p

..

. . .
. ..

.

∂eno
∂w1

nj ,0

∣∣∣∣∣
p

· · · ∂eno
∂w1

nj ,ni

∣∣∣∣∣
p

← NN
output, 1

..

.

← NN
output, no

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(21)

[Joutp] =

| ← neuron, 1 � | · · · | ← neuron, no � |
∂e1
∂w2

1,0

∣∣∣∣∣
p

· · · ∂e1
∂w2

1,nj

∣∣∣∣∣
p

..

. . .
. ..

.

∂eno
∂w2

1,0

∣∣∣∣∣
p

· · · ∂eno
∂w2

1,nj

∣∣∣∣∣
p

· · ·

∂e1
∂w2

no ,0

∣∣∣∣∣
p

· · · ∂e1
∂w2

no ,nj

∣∣∣∣∣
p

..

. . .
. ..

.

∂eno
∂w2

no ,0

∣∣∣∣∣
p

· · · ∂eno
∂w2

no ,nj

∣∣∣∣∣
p

← NN
output, 1

..

.

← NN
output, no

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

Each component of the Jacobian matrix in Eqs. (20)–(22) can be
determined by the chain rule as expressed by

∂eo
∂wk

j,i

∣∣∣∣∣
p

=
∂OUTCo − OUTNo

∂wk
j,i

∣∣∣∣∣
p

=−
∂OUTNo

∂Yk
j

∣∣∣∣∣
p

∂Yk
j

∂Xk
j

∣∣∣∣∣
p

∂Xk
j

∂wk
j,i

∣∣∣∣∣
p

(23)

where

∂OUTNp,o

∂Yk
j

∣∣∣∣∣
p

≡ (Fk
o,j)

′|p (24)

∂Yk
j

∂Xk
j

∣∣∣∣∣
p

= (1 − Yk
j )

2|p ≡ Skj |p (25)

∂Xk
j

∂wk
j,i

∣∣∣∣∣
p

= ykj,i|p (26)

The defined derivative function (Fk
o,j)

′|p and slope Skj |p of neuron
j are represented in Eqs. (24) and (25). The multiplication of the
function and slope is defined as

δko,j|p ≡ Skj |p(Fk
o,j)

′|p (27)

From Eqs. (26) and (27), Eq. (23) can be rewritten as

∂eo
∂wk

j,i

∣∣∣∣∣
p

=
δko,j|pykj,i|p if i ≠ 0

δko,j|p if i = 0

{
(28)

In Eq. (28), ykj,i|p is determined in the forward propagation

process. However, δko,j|p is unknown in the forward propagation
process, and it is obtained in the backward propagation process,
as shown in Figs. 7(a) and 7(b). The term (Fk

o,j)
′|p is the derivative

of the output of the neuron j and the layer k with regard to the non-
linear function, which is made up by the activation function. Thus,
δko,j|p for the output layer and hidden layer can be written as

δ2o,j|p =
S2j |p, if o = j

0, if o ≠ j

{
(29)

δ1o,j|p = w2
o,jδ

2
o,o|pS1j |p (30)

5.2 Artificial Neural Network Learning Process of
Levenberg–Marquardt Backpropagation-Bayesian Regulari-
zation. Figure 8 illustrates the ANN learning process for the MC
regression model. The superscript * denotes the old or present
value before updating the value. There are two main iteration
loops of I and K. The first I iteration loop implements the identical
learning processes for one hundred times. This is because the
ANN performance in each learning process will be different
because the procedures are performed with randomly initialized
weight vectors which Nguyen and Widrow [38] presented, and it
influences the ANN performance. Even though the variation in the
learning process results can be minimized by the Bayesian regulari-
zation utilized in this research, a slight difference of each ANN per-
formance still exists. Thus, the ANNwith the best performance after
one hundred iterations is kept for the optimal ANNMC model. The
secondK iteration loop represents the LMB-Bayesian regularization
algorithm.

6 Description of the MLMC Reynolds Model
The ANN regression acquired from machine learning is coupled

with the Reynolds model to alleviate the latter’s principal shortcom-
ing: utilizing assumed MC values for the prediction of the pad
leading and trailing edge temperatures. In this study, the model
will be referred to as the MLMC Reynolds model. A generalized
Reynolds model is employed, including variable viscosity
through the film thickness. The 3D energy equation is applied in
the film and 3D structure for thermal deformation and pad flexibil-
ity effects. The specific description is provided in the earlier consec-
utive studies [4,19,21].

As shown in Fig. 9(b), there are three ANNs trained, which are
area-MC, BP-pressure, and BP-drag torque and supply flowrate
ANN. The vital one is the area-MC ANN, where the averaged MC
(area-MC) was defined in Eqs. (1) and (2). In addition, the
BP-pressure ANN is generated, which predicts pad pressure at
plane (1) in Fig. 9(a). In Fig. 9, it is noted that the BP in and out pres-
sure at the plane (1) is the Reynolds model’s input parameters, and it
is iteratively updated by the BP-pressure ANN’s output. The data
transfer in Fig. 9(a) of the staggered boundaries (planes 1 and 2) is
due to the fact that the BP inlet and outlet boundaries in the CFD
model are defined at the plane (2) of the Reynolds model as shown
in Fig. 9(a). The corresponding Δx(4 deg) in the CFD is applied
for the complete coupling of both Reynolds and ANN models.

Yang and Palazzolo [4] demonstrated that the contribution of the
BP regions to the drag torque becomes considerable at high operat-
ing speeds. Thus, the ANN for BP-drag torque and supply flowrate
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is utilized to provide the drag torque contributions from the BP
regions between pads, and the total supply flowrate. The drag
torque between pads is summed with the drag torque on pads to
obtain the total drag torque on the entire journal. The drag torque
on the pads can be obtained from

DT =
∫
As

(
Rs × μf

∂utng
∂r

)
dAs (31)

where utng is the tangential velocity at the shaft surface, μf is the
dynamic viscosity of the lubricant, and As indicates the shaft area
in the pad regions.
The nine input parameters in Fig. 9(b) were selected for having

the largest influence on the MC, based on the parametric studies
that are discussed in Sec. 7.1. The ANN and Reynolds models are
continuously updated in the transient solver by transferring input
and outputs to each other.

Fig. 8 ANN learning process of LMB-Bayesian regularization for good performance

Fig. 9 Data transfer between ANN and Reynolds model: (a) data transfer location and (b) flow diagram of the
data transfer between models, including drag torque, supply flowrate, pressure, MC
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As discussed in Part I and earlier studies [4,5], the conventional
radially uniform temperature assumption in the pad inlet can cause
under-prediction of shaft temperatures. This may require selection
of MC outside of the conventional (0.4–1.0) range to match test
or CFD results. Conversely, significant prediction errors may
occur even though the MC is selected within the conventional
range (0.4–1.0). To address this shortcoming of the Reynolds
model, it is proposed to use the following temperature boundary
condition at the shaft wall:

Tw = CwT film (32)

where T film is the mean temperature of the full film domain and Cw

is a correction factor that is always 1.075 and is identified in the
present study. The correction factor 1.075 was estimated based on
a representative CFD simulation result (9000 rpm case in Part I)
and adjusted for the Reynolds model to predict the shaft temperature
accurately. Finally, Fig. 10 represents the calculation procedure for
the coupled rotordynamic coefficient and MLMC Reynolds bearing
models.
The Reynolds 3D energy equation solution requires that all nodes

in the film at the pad leading edge have prescribed temperatures.
The specified temperature (BP outlet temperature) is determined
by Eq. (3) and is applied to all nodes at the pad leading edge.
The radially averaged BP inlet temperatures and the supply temper-
ature are given during the calculation. The area MC is applied to the
equation, and it is obtained from the area-MC ANN.

7 Results

7.1 Parameter Study of Computational Fluid Dynamics
Predicted Mixing Coefficients. Table 4 lists the 18 parameters
selected for describing the geometry and operating state of a BP
region. Minimum, median, and maximum values were assigned to
each parameter. CFD based simulations were performed changing

one parameter at a time, while the remaining parameters were
given their medium values, with the varied parameter assuming
its minimum, median, and maximum value.
Figure 11 shows a typical distribution of “axial”MC, by Eqs. (3)

and (4), obtained from the CFD model. The axial MC distribution
can be classified into three distinct regions, which are the nozzle
effect region, uniform mixing region, and end effect region. Con-
ventional mixing theory is based on the flow characteristics in the
uniform mixing region, and the influence of the nozzle effect
region and end effect region are treated as an extension of the
uniform mixing region. However, independent consideration of
the MC characteristics in the nozzle effect region and end effect
region is essential, especially if the bearing is short, or direct lubri-
cation is taken into account.
Figure 12 shows the percent changes of the area MC, by Eqs. (1)

and (2), at the upper and lower bounds of the respective parameters.
Table 2 shows that parameters (1)–(8) are “geometric” parameters
that are fixed, and parameters (9)–(18) are “operating” parameters
that may change in the iterative solution process. The geometric
parameter’s effects on the MC are relatively minor when compared
with the operating parameter’s effects. Parameters (16) hin/Cl,b and
(17) hout/Cl,b show the strongest impact on the MC. It is also notable
that the MC is sensitive to changes of many different BP
parameters.
The total pressure Pt,sup (=static pressure+ dynamic pressure) at

the supply oil input is imposed as a boundary condition, to improve
computational convergence. Thus, the static pressure (supply pres-
sure) and flowrate (supply oil flow) at the supply oil inlet are calcu-
lated from the CFD simulation. Figures 13–15 show the effects
of the main parameter changes on the axial MC distributions of
Eqs. (3) and (4). Figures 13(a) and 13(b) illustrate the effect of

Fig. 10 Flow diagram for solution of coupled rotordynamic
coefficient and MLMC Reynolds bearing model

Table 4 Selected ranges of the BP input parameters P(i) of
Table 2

Parametera no. Min, p−(i) Median, p(i) Max, p+(i) Unit

P(1) 9 12 15 (deg)
P(2) 0.25 0.5 0.75 –
P(3) 0.25 0.5 0.75 –
P(4) 0.21 0.41 0.61 –
P(5) 0.085 0.105 0.125 –
P(6) 25.4 50.8 76.2 (mm)
P(7) 0.0050 0.0084 0.0118 –
P(8) 0 0.3 0.6 –
P(9) 60 80 100 (C)
P(10) 40 45 50 (C)
P(11) −20 0 20 (C)
P(12) 40 60 80 (m/s)
P(13) 0.3 0.5 0.7 (MPag)
P(14) 0 0.25 0.5 (MPag)
P(15) 0 0.25 0.5 (MPag)
P(16) 0.5 1.0 1.5 –
P(17) 1.0 1.5 2.0 –
P(18) ISO 15 ISO 32 ISO 46 –

aParameter descriptions are shown in Table 2.

Fig. 11 Three regions representing the axial MC distribution:
nozzle effect region, uniform mixing region, and the end effect
region
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changing the bearing width to radius ratio P(3) of Table 4 and Fig. 5.
Reducing the ratio results in an increase in the nozzle effect region
and end effect region, a decrease in the area MC (−13.8%) of Eq.
(1), and increases in the supply pressure (+4.5%) and averaged
shear stress (+11.5%) between pads.
Figures 14(a) and 14(b) illustrate the effect of changing the param-

eter P(12), the shaft surface speed in Fig. 5 and Table 4. Positive and
negative values of P(12) cause increase and decrease, respectively, in
the areaMC of Eq. (1) and the axialMC of Eq. (3). The shear stress is
significantly increased (+26.1%) at the higher speed in Fig. 14(a),
which causes a significant increase in the between pad-drag torque
(BP-drag torque) at higher speed. Figures 14(c) and 14(d ) illustrate
the effect of changing the parameterP(13), the total supply pressure in
Fig. 5 and Table 4. The total supply pressure strongly influences the
axial MC of Eq. (3) near the nozzle. The supply pressure (+37.4% at
a high value) and shear stress (+6.7% at a high value) are propor-
tional to the total supply pressure.
Figure 15 shows that the main operating parameters have a strong

influence on the supply pressure, BP shear stress, and axial MC in
all regions (nozzle effect region, uniform mixing region, and end

Fig. 12 Percent change in area MC of Eqs. (1) and (2), at the BP
input parameter bounds in Table 4

Fig. 13 MC, supply pressure, and averaged shear stress sensitivities to changes of a dominant geometric BP
parameter (L1/Rs) in Table 4: (a) change rate versus P(3)=L1/Rs and (b) axial MC versus P(3)=L1/Rs

Fig. 14 MC, supply pressure, and averaged shear stress sensitivites to changes of dominant BP operating
parameters (Us, Pt,sup) in Table 4: (a) change rate versus P(12)=Us, (b) axial MC versus P(12)=Us, (c) change
rate versus P(13)=Pt,sup, and (d ) axial MC versus P(13)=Pt,sup
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effect region). The film thickness ratio at the BP inlet P(16) = hin/Cl,

b and at the BP outlet P(17) = hout/Cl,b have the strongest influence.
The BP in and out flowrates are proportional to the shaft surface
speed, film thickness, and the gradient of the pressure at the
leading and trailing edges. The film thickness strongly affects the
BP inlet and outlet flowrates. Hence, the ratio of the BP inflow
and outflow (Ya = Qin/Qout) plays an important role to determine
the MC due to the significance of the parameters P(16) and P(17) .
Figures 15(a) and 15(b) show that increasing the BP inlet film thick-
ness ratio hin/Cl,b will raise the BP inflow from the preceding pad,
leading to higher MC because the advection heat of this BP
inflow is dominant for determining the BP outflow temperature.
Conversely higher advection heat from the supply oil will be trans-
ferred into the BP outflow, which will lower MC, if the film thick-
ness is reduced at the BP inlet. The film thickness ratio hout/Cl,b at
the BP outlet influences the BP outflow. Its increase will increase
the influx of advection heat from the supply oil, leading to a reduc-
tion in MC, as shown in Figs. 15(c) and 15(d ).

7.2 Regression Through Machine Learning-Artificial
Neural Network

Table 5 lists the upper and lower bounds for the nine dominant
input parameters selected for regression models through the para-
metric study. The bounds are based on review of bearing manufac-
turer catalog values, for example, bearing length (P(3)) and radius
(P(6)). Bounds on operating parameters, such as journal speed
(P(12)) and total supply pressure (P(13)) were selected in a similar
manner. Maximum temperature (P(9)) of the BP inflow was
chosen based on the melting temperature of the pad babbitt
surface. Bounds on the pressure parameters (P(14), Pin) and (P(15),
Pout), and film thickness parameters (P(16),hin/Cl,b) and (P(17),
hout/Cl,b), at the BP inlet and outlet, were selected based on
maintaining a reasonable mass balance of the BP inflow and
outflow. This was accomplished by examination of the Reynolds
model predictions for various input conditions.

At this point, the ANN learning process with LMB and Bayesian
regularization, as described in Sec. 5, is applied. Table 6 lists the
three different DOE approaches that were tested. Design of
experiment-A is the conventional full factorial with two levels,
and the DOE-B and DOE-C are the proposed combination of full
factorial and LHS in this study. The DOE-C method is the case
which increases the LHS number from the DOE-B.
Figure 16 shows the SSE for the area-MC ANN according to the

training epoch. The SSE is calculated based on transformed −1∼
+1 values of the output values. The SSE of all DOEs decreases

Table 5 Selected input parameters and the bounds

Parameter no.a Min value, P(i),Min Max value, P(i),Max Unit

(3) L1/Rs 0.4 1.0 –
(6) Rs 25.4 76.2 (mm)
(9) Tin 50 120 (°C)
(12) Us 15 95 (m/s)
(13) Pt,sup 0.01 0.7 (MPag)
(14) Pin 0 1.2 (MPag)
(15) Pout 0 0.65 (MPag)
(16) hin/Cl,b 0.3 2.2 –
(17) hout/Cl,b 0.3 2.2 –

aThe description of the parameter number index is represented in Table 2.

Fig. 15 MC, supply pressure, and averaged shear stress sensitivities to changes of dominant BP operating
parameters (hin/Cl,b, hout/Cl,b) in Table 4: (a) change rate versus P(16)=hin/Cl,b, (b) axial MC versus P(16)=
hin/Cl,b, (c) change rate versus P(17)=hout/Cl,b, and (d ) axial MC versus P(17)=hout/Cl,b

Table 6 Applied DOE method and number of data set

DOE case
DOE-A DOE-B DOE-C

DOE type FF LHS FF LHS FF LHS

Training data set 512 0 512 512 512 1024
Test data set 219 438 658
Total data set 731 1462 2194

Note: FF: full factorial; and LHS: Latin hypercube sampling.
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consistently well for the train set. However, the DOE-A method
fails to obtain adaptable accuracy on the test set, which means
that it could not achieve generalization. The poor performance of
the DOE-A ANN is shown in Fig. 17(a).
Design of experiment-B and DOE-C exhibit strongly decreasing

SSE for both the train and test data sets, as shown in Figs. 16(b)
and 16(c). The DOE performance achieves generalization, as con-
firmed in Figs. 17(b) and 17(c). The combined DOE approach and
LMB-Bayesian regularization show excellent performance. The
test set error is reduced significantly from DOE-A to DOE-B by
simply adding an equal number of the LHS as shown in
Table 6. This is an advantage over the three-level full factorial
method (Fig. 4(a)), which requires 19,683 samples for the training.

There is a small improvement when adding the LHS train set,
which is DOE-C, so the DOE-C method is chosen for the regres-
sion model.
Increasing the number of neurons reduces the error of the train set;

however, too large of a number may cause excessive computational
load to train and may fail generalization. Figure 18 shows the effect
of the number of neurons on the ANN performance of the area-MC
ANN model. The performance shows increasing improvement as
the number of neurons increases from five to the optimal number
25. The optimal number of neurons is illustrated in Fig. 19(a) for
the area MC of Eq. (1). The SSE of the regression models for
BP-drag torque and supply flowrate and BP-pressure ANN (Sec. 6)
are provided in Figs. 19(b) and 19(c), and the optimal number of

Fig. 17 Effect of DOE type (20 Neurons) on ANN performance for area MC (Eq. (1)): (a) DOE-A, (b) DOE-B, and (c) DOE-C

Fig. 18 Effect of the number of neurons (2194 data samples) on ANN performance for area MC (Eq. (1)): (a) 5 neurons, (b) 10
neurons, and (c) 25 neurons (optimal)

Fig. 16 SSE according to DOE type (20 neurons): (a) DOE-A, (b) DOE-B, and (c) DOE-C
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neurons is given in Table 7. These regression models and those for
MC are utilized to improve the Reynolds model.
It is noted that the SSE of the test set does not improve or worsen

over its optimal neuron number value, even though the SSE of the
training set continuously decreases. So, utilization of more neurons
than optimal values is not helpful for improving the regression
model’s accuracy.
The training procedure produced the final regression model using

the optimal neuron numbers shown in Table 7. Its performance is
illustrated in Fig. 20 for area-MC (Eq. (1)), BP-drag torque and
supply flowrate, and BP-pressure ANN models. All ANN models
show excellent performance. These ANN models are combined
with the Reynolds model in Sec. 7.4 to overcome shortcomings
of the conventional approach.

7.3 Regression Through Log Fitting of Non-Dimensional
Parameter (Ya). This section presents a log fitting method, utiliz-
ing the non-dimensional parameter (Ya) of Table 1, to yield a com-
putationally simplified regression model for MC. This approach can
be used as an alternative to the direct ANN model, although the
accuracy is reduced. The non-dimensional parameter (Ya) is
derived from the mass and heat balance in the BP. Then, the CFD
results are fitted with a log function of Ya.
Figure 21 depicts all boundary flows between pads, and the cor-

responding mass balance equation is∫∫
sup

ρudA +
∫∫

in
ρudA −

∫∫
out
ρudA −

∫∫
side

ρudA = 0 (33)

or expressed in terms of flowrate symbols becomes

Qsup + Qin − Qout − Qside = 0 (34)

The energy balance between pads, neglecting heat convection
and dissipation because of their minor effects, becomes∫∫

sup
ρucpTdA +

∫∫
in
ρucpTdA −

∫∫
out
ρucpTdA

−
∫∫

side
ρucpTdA = 0 (35)

This equation may be written assuming constant fluid specific
heat (cp) and density (ρ), and Eq. (2) as

QsupTsup + QinTin − QoutTout − QsideTside = 0 (36)
Combining Eqs. (34) and (36) and utilizing Eq. (1) yield

(Tout − Tsup)

(Tin − Tsup)
=

Qin

Qout
−
Qside

Qout

(Tside − Tsup)

(Tin − Tsup)
=MC (37)

This result shows that the area MC is a function of BP inflow,
outflow, side flow, side temperature, inlet temperature, and supply
oil temperature, i.e.

MC = f (Qin, Qout, Qside, Tside, Tin, Tsup) (38)

The middle expression in Eq. (37) is dominated by Qin/Qout

because of the high-speed rotating shaft effect

Qin

Qout
> >

Qside

Qout

(Tside − Tsup)

(Tin − Tsup)
(39)

This result supports using a regression model to provide MC as a
function of Qin/Qout and to compensate for ignoring the right side
term in Eq. (39). A log function is utilized for this purpose due to
its simplicity and its high goodness of fit. Define

Ya ≡
Qin

Qout
(40)

The CFD results obtained from DOE-C in Sec. 7.2 are utilized for
the regression by Ya. Figure 22(a) shows that the total data set has
log function characteristics, and lies within ±15% bounds of the log
fitting results, as shown in Fig. 22(b).
The mathematical expression for the log fit is

MC =min [0.422 ln (|Ya|) + 0.801, 1] (41)

The performances of machine learning and log fitting are com-
pared in Table 8. The MSE is the mean squared error defined by
Eq. (42), and it is calculated based on the actual values. The
R-squared is a frequently employed parameter for evaluating regres-
sion performance as defined in Eq. (43). An R-squared near one
indicates good performance. The machine learning-ANN regression
provides greater accuracy for the area MC (Eq. (1)); however, the
simplicity of the log approach makes it appealing for ease of imple-
mentation in a Reynolds code

MSE =
1
Ntot

SSE (42)

Fig. 19 Effect of the number of neurons (2194 data samples) on SSE: (a) area-MC ANN, (b) BP-drag torque and supply flowrate
ANN, and (c) BP-pressure ANN

Table 7 Optimal number of neurons

Area-MC (Eq. (1)) BP-D.T. & S.F.R. BP-pressure

No. of neurons 25 25 40

Note: D.T.: drag torque; and S.F.R.: supply flowrate.
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R2 = 1 −
SSE∑Ntot

o=1 (OUTCo − OUTo)
2 (43)

7.4 MLMC Reynolds Model Prediction Performance. The
ANN models obtained from machine learning are combined with
the Reynolds model, as described in Sec. 6, and the resulting mod-
eling method is referred to as the MLMC Reynolds model. The log
fit versus Ya is also combined with the Reynolds model, and the
resulting modeling method is referred to as the log fit mixing coef-
ficient (LFMC) Reynolds model. The results which follow compare
predictions from the full CFD model, the conventional Reynolds
approach with MC extremes (0.4, 1.0) [4], and the MLMC and
LFMC Reynolds models. In all simulations, the area MC is
applied to the Reynolds model. The input parameters for the
model and further details of the physical modeling method are pro-
vided in the Part I paper.
Figures 23 and 24 show comparisons of the static model outputs,

and Figs. 25 and 26 show comparisons of dynamic model outputs
(stiffness and damping). Figure 23(a) shows that for eccentricity
ratio versus rpm, the MLMC Reynolds model shows the best agree-
ment with full CFD. Both MLMC and LFMC show good agreement
with full CFD. The conventional fixed MC approach shows a poten-
tial for large errors. Figure 23(b) shows small absolute difference in
attitude angle versus speed predictions between the various

approaches and full CFD. Figure 23(c) shows small errors
between the MLMC and full CFD predictions for drag torque
versus rpm. The LFMC approach shows somewhat larger errors
than MLMC, and the conventional constant MC approach shows
a wide spread in error depending on the MC value selected.
Figure 24(a) shows that the MLMC and LFMC Reynolds models

Fig. 20 Optimal regression results of machine learning (2194 data samples): (a) MC (Eq. (1)), (b) DTbp,
(c) Qsup, and (d ) BP pressures (Psup, �Pin, �Pout)

Fig. 21 Mass balance diagram of the BP
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over-predict the side leakage at operating speeds over 9000 rpm, but
show very close agreement with CFD for the total supply flowrate.
The conventional, constant assumed MC models cannot predict the
supply flowrate.
Figures 24(b) and 24(c) show good agreement between the full

CFD and MLMC and LFMC Reynolds models for predicting

Fig. 22 Log fitting results (2194 data samples): (a) areaMC (MC) versus || and (b) prediction performance
by log fitting

Table 8 MSE and R2 for the total data set

Machine learning MC Log fitting MC

MSE 1.3 × 10−4 6.5 × 10−3

R2 1.0 0.87

Fig. 23 Full CFD and conventional, MLMC and LFMC Reynolds model static results (TEHD analysis): (a) eccentricity ratio, (b) atti-
tude angle, and (c) drag torque

Fig. 24 Full CFD and conventional, MLMC and LFMCReynoldsmodel static results (TEHD analysis): (a) flowrate, (b) shaft average
temperature, and (c) max pad5 temperature
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shaft and pad temperatures. The conventional, constant assumed
MC model results show large variations in predicted temperatures
depending on the MC selection, and the CFD results occur
outside of the bounds from the MC-0.4 and MC-1.0 bounds in
some instances.
Figures 25 and 26 show predictions of the non-dimensional

dynamic coefficients that are frequency reduced at the synchronous
speed frequency. Figures 25 and 26 correspond to the x- and
y-direction dynamic coefficients, respectively. Figures 25(a) and
26(a) show that the MLMC and LFMC Reynolds direct stiffness
predictions are excellent by comparison with the full CFD model.
Figures 25(b) and 26(b) show non-negligible differences in direct
damping, between the CFD and proposed Reynolds approaches.
Sources of error compared with the full CFD approach stem from
the use of a uniform MC in the Reynolds approaches, as opposed
to a radially and axially varying MC at the pad inlet in the CFD
approach. The log decrement predictions generally all agree well
with CFD, as shown in Figs. 25(c) and 26(c). The Jeffcott rotor
mass is 1019 kg for determining log decrements.
Figures 27(b) and 27(c) show area MC versus rpm plots deter-

mined by the MLMC approach, for different BP locations within
the TPJB. It is notable that the MCs vary considerably versus BP
locations, generally increase with rpm. The difference of MC
depending on BP location can be explained by considering the
parameter Ya, which from Eq. (40) Ya=Qin/Qout. The Ya is the
ratio of the BP inflow and outflow, and the flows are quite propor-
tional to the film thickness. Thus, the MC is approximately pro-
portional to the film thickness ratio hin/hout, and it is expected
that the ratio is higher in the BP3 and BP4 than the others con-
cerning the film thickness model, so the higher MCs are predicted
in the BPs.

8 Conclusion
The Part I paper validated a novel TPJB TEHD-CFD modeling

approach, including pad flexibility, by comparison of predictions
withmeasured data. It also demonstrated that the accuracy of the con-
ventional Reynolds modeling approach was questionable due to the
uncertainty in guessing appropriate values for MCs. A novel
approach for improving the Reynolds modeling results was devel-
oped utilizing an ANN machine learning regression for MCs, utiliz-
ing CFD to solve a myriad of TPJB configurations generated by
DOE. The ranges of the DOE parameters were selected to reflect
those commonly used in industrial applications. A preliminary
study was performed of just the between pad BP region, which
showed that the MC had a strong axial dependence resulting from
the fresh oil flow through a nozzle. This study also revealed a very
strong dependence of the MC on a large number of BP geometric

Fig. 25 Full CFD and conventional, MLMC and LFMCReynoldsmodel dynamic results (TEHD analysis): (a) direct stiffness Kxx, (b)
direct damping Cxx, and (c) log decrement, x-direction

Fig. 26 Full CFD and conventional, MLMC and LFMCReynoldsmodel dynamic results (TEHD analysis): (a) direct stiffness Kyy, (b)
direct damping Cyy, and (c) log decrement, y-direction

Fig. 27 Area MC versus BP location and RPM: (a) BP location
illustration and (b) area MC; TEHD MLMC Reynolds
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and operating parameter values. This highlighted a need for an effec-
tive regression technique, such as machine learning. The number of
input parameters was reduced to a smaller set of primary parameters
that showed the largest effect on the MC. The input values of the
training data samples were extracted from a novel DOE method.
The DOE method consolidated the two-level full factorial and
LHS approaches which led to significant improvements in accuracy
and computation time reduction of the ANN machine learning.
Thermo-elasto-hydrodynamic CFD simulations were performed

on the train data set obtained from the DOE and the test data set.
The results provide output data to the ANN during the learning
process. The ANN was trained, without an overfitting problem, uti-
lizing the LMB with the Bayesian regularization. The MC, BP
supply flowrate, drag torque, and pressures were regressed by
ANN machine learning. These ANN models were directly inte-
grated with the Reynolds TPJB model, to form the MLMC and
LFMC Reynolds TPJB models. The former model utilizes the
ANN machine learning regressions directly. The latter provides
an easily implemented result for providing MC in the form of a
log fit of MC versus the newly defined non-dimensional parameter
Ya=Qin/Qout. Comparisons between the full CFD versus the
MLMC Reynolds and LFMC-Reynolds bearing modeling
approaches showed in general good agreement. Both MLMC Rey-
nolds and LFMC-Reynolds approaches replace the conventional
approach of guessing MC, which by Fig. 27 vary considerably,
even on which pad is considered. The MC is instead derived from
ANN machine learning based regressions of results obtained from
DOE selected, very high fidelity CFD models.
The paper provides an “indirect” experimental validation of the

MLMC approach. The present MLMC code was developed for a
full leading edge geometry, without the leading edge groove
(LEG) of the bearing in the experimental results (second example
in Part I). Including the LEG would introduce additional parameters
and increase the dimensions of the training set. Thus, the present
code programmed the MLMC for a standard leading edge. In Part
I, we presented the CFD simulations for two bearings with very
similar geometry, loading, and speed.

• (First Bearing in Sec. 3, Part I): 101.6 mm diameter, 50.8 mm
length, 0.0749 mm bearing clearance, conventional lubrication

• (Second Bearing in Sec. 4, Part I): 101.6 mm diameter,
60.3 mm length, 0.0814 mm bearing clearance, LEG
lubrication

The validity of the CFD model was verified by comparison with
the test results of the seond bearing (Kulhanek, 2010). It follows
that since the

(1) First and second bearing have very similar geometries.
(2) Exactly identical governing equations and modeling tech-

niques in the CFD model are applied for both bearing’s
simulations.

(3) Identical mesh density is applied to first and second bearings.
(4) Loads and rpm are very similar

it is reasonable to assume that the first bearing’s CFD model was
“indirectly” experimentally validated. Although not ideal, it is like-
wise reasonable to conclude that the validation of the
MLMC-TEHD approach by considering bearing 1 in Part II pro-
vides an “indirect” experimental validation of the approach. That
being said, we are presently updating the MLMC codes to
include LEG and will perform the direct experimental validation
with bearing 2 in the future. Part II also includes comparison of
the MLMC approach with a full bearing CFD simulation which is
in itself a convincing validation, given the higher fidelity and accu-
racy of the full bearing CFD model.
The approach presented provides a means to obtain improved

models for TPJB static and dynamic analyses which benefit from
the high accuracy of CFD models, while preserving the high com-
putational efficiency of the Reynolds approach.
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Nomenclature
e = error
u = fluid velocity (m/s)
w = weighting factor
y = neuron’s input
F = neuron’s defined derivative function
P = pressure (Pa)
Q = flowrate (m3/s)
S = neuron’s slope
T = mass flow averaged temperature at line (°C)
X = neuron’s net value
Y = neuron’s net output
P = mean pressure (Pa)
T = mass flow averaged temperature at area (°C)
cp = fluid specific heat (J/(kg K))
tp = pad thickness (m)

Cl,b = bearing clearance (m)
Fcost = cost function
Pt,sup = total supply pressure (Pa)
P(i) = input parameter of i index
Rs = shaft radius (m)

Tsup = supply temperature (°C)
Us = shaft speed (m/s)

Qsup = standard supply flowrate (m3/s)
DT = drag torque (Nm)
INP = input value
MC = axially varying mixing coefficient

OUTCo = desired output value
OUTNo = aritificial neural network output value

MC = axially averaged mixing coefficient
α = weight regularization parameter
β = error regularization parameter
γ = effective parameter
δ = neuron’s defined delta
μ = combination coefficient
μf = fluid dynamic viscosity (Pa · s)
ρ = density (kg/m3)

{e} = error vector
{g} = gradient vector
{w} = weight vector
[H ] = Hessian matrix
[J ] = Jacobian matrix
[δ] = delta matrix

Superscript

* = old value during iterative calculation

Subscripts

bp = between pads
in = BP inflow
out = BP outflow
op = on pad

side = BP sideflow
sup = supply flow
trn = training data
w = shaft surface wall boundary
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