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Computational Fluid Dynamics
Based Mixing Prediction for Tilt
Pad Journal Bearing TEHD
Modeling—Part I: TEHD-CFD
Model Validation and
Improvements
The core contributions of Part I (1) present a computational fluid dynamics (CFD)-based
approach for tilting pad journal bearing (TPJB) modeling including thermo-elasto hydro-
dynamic (TEHD) effects with multi-mode pad flexibility, (2) validate the model by compar-
ison with experimental work, and (3) investigate the limitations of the conventional
approach by contrasting it with the new approach. The modeling technique is advanced
from the author’s previous work by including pad flexibility. The results demonstrate that
the conventional approach of disregarding the three-dimensional flow physics between
pads (BP) can generate significantly different pressure, temperature, heat flux, dynamic vis-
cosity, and film thickness distributions, relative to the high-fidelity CFD model. The uncer-
tainty of the assumed mixing coefficient (MC) may be a serious weakness when using a
conventional, TPJB Reynolds model, leading to prediction errors in static and dynamic per-
formance. The advanced mixing prediction method for “BP” thermal flow developed in Part
I will be implemented with machine learning techniques in Part II to provide a means to
enhance the accuracy of conventional Reynolds based TPJB models.
[DOI: 10.1115/1.4047750]

Keywords: fluid film lubrication, hydrodynamic lubrication, journal bearings,
thermoelastohydrodynamic lubrication

1 Introduction
The tilting pad journal bearing (TPJB) is the most widely utilized

bearing in industry due to its superior dynamic stability. Accurate
performance prediction of the TPJB is imperative for ensuring satis-
factory machine reliability. Improved prediction accuracy is
increasingly relying on greater sophistication of modeling algo-
rithms and computational methods and hardware. The thin-film
Reynolds model for solving approximate continuity and momentum
equations has been the basis for the conventional TPJB modeling
method [1–34]. More recently, the computational fluid dynamics
(CFD) method has been applied to TPJB modeling [42–52].
Conventional (Reynolds equation) TPJB modeling has evolved

using increasingly sophisticated and comprehensive features since
the 1964 paper on the TPJB dynamic coefficient evaluation by
Lund [1], as summarized in Table 1. These features include use
of a generalized (variable viscosity) Reynolds equation, and a three-
dimensional (3D) energy equation (film, shaft, and pad), inclusion
of 3D structural features (shaft, pad), pivot flexibility, mixing
theory, frequency reduced dynamic coefficients, and multiple-mode
pad flexibility effects. The works of numerous researchers have
revealed that the static and dynamic properties of TPJB are strongly
influenced by the above features and combinations of them. The
multiphysics nature and increasingly complex geometries of the
evolved TPJB models required advancements in computational
hardware and algorithms. Tremendous strides in improving TPJB
modeling accuracy and efficiency have been accomplished in the

past 50 years. This is highlighted in Refs. [1–34], which may inad-
vertently exclude some excellent papers for the sake of brevity.
The following is a brief discussion of the papers listed in Table 1.

Lund [1] introduced the concept of synchronously (or frequency)
reduced dynamic coefficients, which subsequently has been utilized
as “standard practice.” Some machinery acceptance standards, such
as American Petroleum Institute (API) 617 for process compressors,
require that simulations for resonance, stability, etc., utilize fre-
quency (synchronously) reduced dynamic coefficients for bearing
stiffness and damping. Tieu [2] established the importance of
thermal effects using finite element-based solutions of the energy
equation for lubricant temperature and the variable viscosity Rey-
nolds equation.
The importance of including pivot deflection for improving

dynamic coefficient accuracy has been identified by Kirk and
Reedy [4], Brugier and Pascal [6], Medhi et al. [19], and San
Andres and Tao [21]. Ettles [3], Brugier and Pascal [6], Kim
et al. [10,11], San Andres and Li [23], Suh and Palazzolo [30],
and Gaines and Childs [34] improved TPJB modeling by consider-
ing thermal, pressure, and centrifugal load deformation of the TPJB,
including shaft and pad temperature prediction. Fillon et al. [9]
showed that the deformation of all bearing elements (shaft, pads,
and housing) should be taken into account based on the experimen-
tal data under various operating conditions. Earles et al. [7], Kim
et al. [11], and Suh and Palazzolo [30] advanced TPJB dynamic
coefficient modeling by including two-dimensional (2D) and three-
dimensional (3D) modal coordinate for dynamic deformations.
Approximate turbulence corrections to the laminar Reynolds thin-
film model were introduced by Taniguchi et al. [8] and Arihara
et al. [20]. Transient TPJB load modeling, e.g., due to blade loss,
was the focus of Gadangi and Palazzolo [12], Desbordes et al.
[13], and Haugaard and Santos [15].
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In the case of the spherical-type pivot, the pivot friction effect
may be significant for the static and dynamic performance predic-
tion of a TPJB. Several studies [35–40] have been conducted theo-
retically and experimentally for investigating the pivot friction
effect. In a recent study, Kim and Palazzolo [40] examined the non-
linear dynamic characteristics of a rotor-bearing system with the
pivot friction effect, employing the Stribeck curve model [41] for
accurate dynamic force and moment predictions on the pad.
Additional improvements to TPJB modeling were made in the

areas of controllable oil injection [15], manufacturing uncertainty
[17], wear on the bearing surface [18], starvation flow [24], etc.
Fillon and Khonsari [14] provided thermo-hydro-dynamic (THD)
design charts for the TPJB based on theoretical modeling.
Advanced TPJB models in the recent literature [26–33] combine
the above features with 3D numerical analysis.
There is, however, a general acknowledgment of weakness in

prescribing accurate temperature boundary conditions at pad
inlets [26,29,46,51,52] and modeling the cavitational flow and
fluid inertia-dominant flow. Cavitation frequently occurs in diverg-
ing film or textured surfaces, and the phase change rates by evapo-
ration and condensation are ignored in the conventional cavitation
model (Reynolds equation). In particular, the conventional
approach obtains a bulk flow approximation of a uniform tempera-
ture over the entire pad inlet due to the mixing of hot oil carryover
from the preceding pad and fresh supply oil routed to the bearing.
This approach is characterized by a MC which can only be empir-
ically derived from experiment or by using a 3D Navier–Stokes—
Thermal model solved with CFD techniques. As in Eq. (1), the MC
mathematically is defined by the pad inlet (BP outlet) temperature,
the supply oil temperature, and the outlet (BP inlet) temperature of
the previous pad.

MC ≡
Tout − Tsup
Tin − Tsup

= f (MCk , Qin, Qout , . . . ) (1)

The MC can be expressed as a function of the assumed MC value
(MCk), BP inlet flowrate (Qin), and BP outlet flowrate (Qout).

The CFD approach reveals that the assumption of a uniform film
temperature at the pad inlet is poor, especially in forced lubrication
systems that employ nozzles and jets. However, this convention is
utilized in most of the literature cited in Table 1. As a consequence,
CFD has been adapted in recent publications [42–45]. Plain journal
bearing models with full Navier–Stokes equation solutions, includ-
ing thermal effects, and thermo-elastic deformation (fluid-structure
interaction (FSI)) have been developed. Table 2 provides a
summary of TPJB-related publications employing CFD, illustrating
the contribution of the present work.
Most of these papers treat the TPJB with the assumption of iso-

lated pads, neglect mesh deformation when considering pad and
shaft motions, and neglect thermo-elastic deformation resulting
from the solution of the three-dimensional energy equation.
Armentrout et al. [47] proposed a hybrid CFD-Reynolds model, uti-
lizing a Reynolds model for the shaft and pad equilibrium, but
neglected thermal effects. Hagemann et al. [50] also utilized the
initial film thickness from the solution of the thermo-elasto-hydro-
dynamic (TEHD) Reynolds model. However, both models were not
fully coupled, resulting in a possible discontinuity in pressure, tem-
perature, film thickness, etc., as discussed in Ref. [51]. Yang and
Palazzolo [51] presented a significant improvement in the CFD
modeling approach incorporating many modeling features of
advanced Reynolds models, plus replacing the simple MC theory
with full 3D, CFD-thermal modeling between pads (BP). Pad flex-
ibility is known to reduce TPJB damping significantly
[6,11,31,23,34] but was ignored in Ref. [51].
The objectives of Part I are to (1) improve the TEHD CFD model

by including pad flexibility and investigate its effect on the static and
dynamic prediction accuracy, (2) present the detailed methodology
for the TEHD-CFD model with pad flexibility, (3) validate the
approach by comparison with experimental results [53,54], and (4)
investigate the limitations of the conventional (Reynolds) approach’s
by comparing the temperature, pressure, heat flux, and film thickness
fields with the CFD results. Part II demonstrates how the conven-
tional approach may be improved by using artificial neural networks
in machine learning to utilize CFD flow model results to represent
pad inlet temperature distributions more accurately.

Table 1 Development history of TPJB performance prediction

Researchers\Newest
Techniques

Generalized
Reynolds

3D
Film
Energy

3D
Shaft
Energy

3D Pad
Energy

Shaft
Thermal

3D
Deflection

Pad
Thermal

3D
Deflection

3D Pad
Flexibility

Pivot
Flexibility

Mixing
Theory

Multiple-mode
pad flexibility

Lund (1964) [1] Δ X X X X X X X X Δ
Tieu (1973) [2] Δ Δ X X X X X X X X
Ettles (1980) [3] Δ Δ Δ Δ X Δ Δ X O Δ
Knight and Barrett (1987) [5] Δ Δ X Δ X X X X O Δ
Brugier and Pascal (1989) [6] O O X Δ O O O O O Δ
Earles et al. (1990) [7] Δ X X X X X O O O Δ
Taniguchi et al. (1990) [8] Δ O X O X X X X O X
Kim et al. (1994–1995) [10,11] O Δ X Δ X Δ Δ O O O
Gadangi and Palazzolo (1995)
[12]

O Δ X X X X Δ X X X

Desbordes et al. (1995) [13] Δ X X X X X O X X X
Haugaard and Santos (2010)
[15]

Δ X X X X X O X X X

Rindi et al. (2015) [16] Δ X X X X X X O X X
Dang et al. (2017) [17] Δ Δ O O X O O O X Δ
Lee et al. (2018) [18] O O X O X X X X O X
Mehdi et al. (2018) [19] Δ Δ X X X X X O O X
Arihara et al. (2019) [20] O O Δ O Δ O O X O X
Andres et al. (2013–2019)
[21–25]

Δ Δ X X Δ Δ Δ O O X

Hagemann et al. (2017–2019)
[26–29]

O O Δ O O O O O O Δ

Palazzolo et al. (2014–2017)
[30–33]

O O O O O O O O O O

Note: *O: considered; Δ: simplified; and X: not considered.
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2 TEHD–CFD Modeling Methodology Including Pad
Flexibility
2.1 Pad Flexibility Consideration. The author’s prior work

[51,52] presents a CFD modeling methodology for TPJB static
and dynamic performance prediction, including 3D multiphase
flow, thermal-fluid, transitional turbulence, thermal-rotational
shaft, and thermal deformation of the shaft and pads using FSI tech-
niques. The k–ω-based shear stress transport (SST) model with an
additional two equations is applied to solve the Reynolds-averaged
Navier–Stokes (RANS) equations with the Reynolds stress terms.
The gamma transitional turbulence model was also included for
the laminar and turbulence transition between pads.
The model considers shaft translational motion, pad tilting

motion, and pivot flexibility. Pad flexibility was neglected in
Refs. [51,52], but it is included in the present study.
The TPJB system has five pads with the load between pads

(LBP), as shown in Fig. 1. The BP region is groove region
between pads and its detailed model is a distinguishable feature
of the present CFD model. The fluid-film domain (blue) is
divided into the five sub-domains on each pad. Determination of
bearing damping requires specification of equivalent mass, momen-
tum, and energy source terms corresponding to velocity perturba-
tions of the rotor-bearing coordinates. The source terms are local
to five sub-domains that are defined in the CFX model. Velocity
perturbations of selected mode shapes are performed to obtain
damping coefficients and are prescribed as source terms in the con-
servation equations for the fluid film sub-domains (blue). The padT
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Fig. 1 TPJB configuration for the CFD model

Fig. 2 Multiphysics static calculation for the flexible pad case

Fig. 3 Multiphysics dynamics calculation for the flexible pad
case
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mesh is displaced by perturbing the modal coordinates of selected
eigenvectors of the flexible pad. These pad displacement perturba-
tions of the pad surfaces (red) are imposed as boundary conditions
on the fluid film. Figures 2 and 3 illustrate the codes employed in the
multiphysics solution process for both the static and dynamics
cases, respectively. Figure 2 shows that the pressure distribution
at the pad surface, from the CFD solver, is transferred to the
finite element analysis (FEA) solver to determine deflections
during the iterative calculation for the static solution.
Figure 3 shows the computational procedure for calculating

dynamic coefficients, including CFD thermal and flow modeling
and pad flexibility effects. First, the selected modes, pad geometry,
and properties are input in the 3D structuremodel. Then, the stiffness
and mass matrix is assembled based on the finite element method
(FEM) [55], and the eigenvectors (mode shapes) of the pads are cal-
culated. The selected mode shapes are utilized to perturb the pad
surface displacements in the CFD solver to obtain the resulting per-
turbed forces, which are formed as resultants of pressures and shear
stresses acting on the pads surfaces. The perturbed forces are trans-
ferred from the CFD solver to the 3D structure (FEM) code, where
they are interpolated on the pad surface nodes. The perturbed
forces are utilized to calculate the full set of un-reduced dynamic
coefficients, after transforming coordinates from physical to
modal. Ultimately, the frequency reduced dynamic coefficients are
determined, and subsequently, log decrements and other system
dynamic response types are obtained.

2.2 Stiffness and Damping Matrices, and Log Decrement
(Finite Element Analysis Solver). The perturbation method for
CFD evaluation of dynamic coefficients was presented in
Ref. [52] for the rigid pad case. The 12 degrees-of-freedom associ-
ated with a single, rigid pad TPJB include x and y translational
journal motions, five pad pivot motions, and five tilting motions.
Thus, 24 position perturbations, including both positive and nega-
tive ones, are needed for evaluating the bearing stiffness matrix,
and 24 velocity perturbations are needed for evaluating the
bearing damping matrix. Including pad flexibility requires modal
coordinates for the pad deformation motion, which increases the
total number of degrees-of-freedom. The number of pad modes
included in the model is selected by balancing computational effi-
ciency and accuracy, as described in Sec. 2.5. The mechanical
APDL solver is used for static analysis, but an in-house 3D structure
model is utilized for the dynamic coefficient calculation to achieve
better compatibility among the solvers. The equation of motion for
the undamped 3D pad structural model is

[mp]
(n×n)

{ẍp}
(n×1)

+ [kp]
(n×n)

{xp}
(n×1)

= {fp}
(n×1)

(2)

The mass [mp] and stiffness [kp] matrices are obtained using the
FEM [55], and n indicates the number of degrees-of-freedom in

the pad FEM mesh. The targeted bearing in this study has a cylin-
drical pivot. Thus, fixed displacements are imposed at axial line-
nodes at the pivot location. Axial line nodes at the middle of
pad surfaces are prescribed with a free boundary condition in
the y′-direction (local coordinate, Fig. 4(b)), and fixed for other
directions to prevent matrix singularity problems. The equations
of motion become uncoupled when transformed into modal coor-
dinates. Perturbation of the modal coordinates results in perturba-
tions of the physical coordinates on the pad’s film surface, via
transformation from modal to physical coordinates. The mode
shape vectors are derived in the usual manner from the free vibra-
tion form of Eq. (2)

( [kp]
(n×n)

− [λp]
(n×n)

[mp]
(n×n)

) [ϕp]
(n×n)

= ([kp] −

λ p1 0

. .
.

0 λ pn

⎡
⎢⎢⎣

⎤
⎥⎥⎦

[mp])[ ϕ p1

(n×1)

| · · · | ϕ pn

(n×1)

] = 0

(3)

where [λp] is the eigenvalue matrix (λ pi = ω2
pi) and {ϕpi} are the

eigenvectors (mode shapes). The pad’s physical coordinate displa-
cement vector {xp} is obtained from

{xp}
(n×1)

= [ϕM]
(n×m)

{ξp}
(m×1)

= ϕM1
(n×1)

| · · · |ϕMm
(n×1)

[ ]
{ξp}
(m×1)

(4)

where m is the number of selected mode shapes, [ϕM] is the cor-
responding modal matrix, and {ξp} is the modal coordinate
vector. Substitution of Eq. (4) into Eq. (2) yields the reduced-order
modal coordinate equations

[ϕM]
T

(m×n)

[mp]
(n×n)

[ϕM]
(n×m)

{ξ̈p}
(m×1)

+ [ϕM]
T

(m×n)

[kp]
(n×n)

[ϕM]
(n×m)

{ξp}
(m×1)

= [ϕM]
T

(m×n)

{fp}
(n×1)

(5)

Substituting the orthogonality relations

[Mp]
(m×m)

= [ϕM]
T

(m×n)

[mp]
(n×n)

[ϕM]
(n×m)

=

Mp1 0

. .
.

0 Mpm

⎡
⎢⎣

⎤
⎥⎦ (6)

[Kp]
(m×m)

= [ϕM]
T

(m×n)

[kp]
(n×n)

[ϕM]
(n×m)

=

Kp1 0

. .
.

0 Kpm

⎡
⎢⎣

⎤
⎥⎦ (7)

Fig. 4 Coordinates and parameters for the film thickness at the equilibrium state: (a) geomet-
ric parameters of the film thickness and (b) equilibrium position
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Into Eq. (5) yields

[Mp]
(m×m)

{ξ̈p}
(m×1)

+ [Kp]
(m×m)

{ξp}
(m×1)

= {Fp}
(m×1)

(8)

which is utilized to obtain the dynamic coefficients including the
effects of pad flexibility. The term {Fp} is the modal force vector
defined by

{Fp}
(m×1)

= [ϕM]
T

(m×n)

{fp}
(n×1)

=

Fp1

..

.

Fpm

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭ (9)

The calculation procedure for the bearing stiffness matrix compo-
nents related to the journal and rigid pad modes (kJJ, kJR, kRJ, kRR)
was provided in Ref. [52]. The stiffness matrices (kJF, kRF, kFF,
kFR, kFJ) for the flexible pad’s modal coordinates are provided
below. The number of pads in the bearing is np. The magnitude
of physical coordinate displacement and velocity perturbations
was discussed in Ref. [52] for the rigid pad case. The modal coor-
dinate displacement perturbation and modal coordinate velocity
perturbation are given in Eqs. (10) and (11), respectively.

Δmj
k,pb =

0.01Cl,b

max (|{ϕMk,y′}| )
(10)

Δṁj
k,pb =

0.01Cl,bΩs

max (|{ϕMk,y′}| )
(11)

The eigenvectors (mode shapes) are normalized by the maximum
value max (|{ϕMk,y′}|) in the local coordinate y′-direction. The local
y′ coordinate is illustrated in Fig. 4(b). Thus, the scale of the modal
displacement perturbations for the flexible modes is applied by Eq.
(10), and the modal velocity perturbation is also taken by the mul-
tiplication of the modal displacement perturbations and operating
speed as in Eq. (11). The kth eigenvector {ϕMk,y′} includes only
y-direction displacement in the local coordinate of a pad. The
bearing stiffness matrix for the full set of rigid (R) and flexible
(F) coordinates is

(12)

where

kmi
kx
= −

Fi
pk
(+Δxpb) − Fi

pk
(−Δxpb)

2Δxpb
,

(i, 1) term in kmkx (np × 1) in Eq. (12)

(13)

kmi
ky
= −

Fi
pk
(+Δypb) − Fi

pk
(−Δypb)

2Δypb
,

(i, 1) term in kmky (np × 1) in Eq. (12)

(14)

kmi
kδ

j = −
Fi

pk
(+Δδjpb) − Fi

pk
(−Δδjpb)

2Δδjpb
,

(i, j) term in kmkδ (np × np) in Eq. (12)

(15)

kmi
kp

j = −
Fi

pk
(+Δpjpb) − Fi

pk
(−Δpjpb)

2Δpjpb
,

(i, j) term in kmkp (np × np) in Eq. (12)

(16)

kxmj
k
= −

Fs,x(+Δmj
k,pb) − Fs,x(−Δmj

k,pb)

2Δmj
k,pb

,

(i, j) term in kxmk (1 × np) in Eq. (12)

(17)

kymj
k
= −

Fs,y(+Δmj
k,pb) − Fs,y(−Δmj

k,pb)

2Δmj
k,pb

,

(1, j) term in kymk (1 × np) in Eq. (12)

(18)

kδimj
k
= −

Mi
p(+Δm

j
k,pb) −Mi

p(−Δm
j
k,pb)

2Δmj
k,pb

,

(i, j) term in kδmk (1 × np) in Eq. (12)

(19)

kpimj
k
= −

Fi
pvt(+Δm

j
k,pb) − Fi

pvt(−Δm
j
k,pb)

2Δmj
k,pb

,

(i, j) term in k pmk (np × np) in Eq. (12)

(20)

kmi
km

j
l
= −

Fi
pk (+Δm

j
l,pb) − Fi

pk (−Δm
j
l,pb)

2Δmj
l,pb

+ Kj
Pk
,

(i, j) term in kmkml (np × np) in Eq. (12)

(21)

The modal stiffness matrix in Eq. (7) is utilized in the modal stiff-
ness term kmi

k m
j
l
of the full stiffness matrix in Eq. (12). This corre-

sponds to perturbations of the modal coordinates. The components
of the full damping matrix are obtained in a similar manner as with
the full stiffness matrix.

(22)
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The full mass matrix of the total system consists of the journal’s
mass (ms), the moment of inertia (mδ δ), rigid body pad mass (mpp),
and modal mass of the pads (mmkml ) as in Eqs. (23)–(26).

(23)

mδjδj = IjT ,(j, j) term inmδδ (np × np) in Eq. (12) (24)

mpjpj = mj
p,(j, j) term inm pp (np × np) in Eq. (12) (25)

mmj
km

j
l
=Mj

Pk
,(j, j) term inmmkml (mnp × mnp) in Eq. (12) (26)

The modal mass matrix of Eq. (6) is utilized in the modal mass
term mmj

km
j
l
of the full mass matrix in Eq. (23). This corresponds

to perturbations of the modal coordinates.
The majority of rotordynamic modeling software packages

require that the bearing matrices be 2 × 2, i.e., only relate the trans-
lational coordinates of the journal. This is also required in the rotor-
dynamics simulations specified in the API standards for
petrochemical plant rotating machinery acceptance [52]. The 2 × 2
matrices are obtained from the full dynamic coefficient matrices
by imposing the condition that all degrees-of-freedom (journal,
pads, pivots) vibrate at the same frequency (ν). This is referred to
as frequency reduction, and the corresponding dynamic coefficients
are referred to as “Frequency Reduced Dynamic Coefficients.” The
2 × 2 matrix dynamic coefficients are obtained from Eqs. (27) and
(28), and the necessary parameters are given in Eqs. (29)–(33).
The specific derivation is described in the earlier study [52].

[k̂JJ ]
(2×2)

= real [Z ′
JJ ]

(2×2)

( )
(27)

[ĉJJ ]
(2×2)

=
1
ν
imag [Z ′

JJ ]
(2×2)

( )
(28)

where

[Z ′
JJ ]

(2×2)
= [ZJJ ]

(2×2)
− [ZJP]

2×(2np+mnp)
[Z−1

PP]
(2np+mnp)
×(2np+mnp)

[ZPJ]
(2np+mnp)×2

(29)

[ZJJ ]
(2×2)

= iν [cJJ]
(2×2)

+ [kJJ ]
(2×2)

(30)

(31)

(32)

(33)

Rotordynamic system studies combine the shaft, bearing, casing,
seals, etc., sub-models into a total system model. The system model
is utilized to determine free and forced vibration response character-
istics such as natural frequencies, mode shapes, log decrements,
imbalance response, etc. Modal log decrements quantify the
damping present in the individual modes. Positive log decrements
indicate stable, damped modes, a log decrement of zero indicates
an undamped mode, and negative log decrements indicate unstable
modes. The effect of changes of bearing parameters on log decre-
ment is sometimes performed by considering a simplified rigid
rotor model symmetrically supported on two identical TPJB [52].
The log decrements (δdec,i) are determined from

δdec,i =
2πφi��������
1 − φ2

i

√ (34)

where

φi =
real(λ s,i)
|λ s,i| (35)

and λs,i are system eigenvalues.

2.3 Boundary Conditions and Source Terms for
Perturbation Forces (Computational Fluid Dynamics
Solver). The CFD solver calculates the forces and moments result-
ing from the displacement perturbations and velocity perturbations,
in order to determine the bearing stiffness and damping matrices.
Perturbations of modal coordinates result in perturbations of the
nodes on the pad surface via Eq. (4). This imparts displacement
or velocity boundary motions on the fluid mesh in the CFD flow
model. The pad structure’s FEM mesh and the film’s CFD mesh
do not have identically located nodes. Therefore, motions and
forces must be transferred via interpolation between the structural
deformation and fluid meshes at the pad-film interface. The displa-
cement perturbations of the pad surface mesh in the global x and y
directions, as shown in Fig. 1, are determined from

{ΔxjFpb,k}
(nc/3×1)

⇐Interpolation
{ϕj

Mx,k}
(n/3×1)

×Δmj
k,pb (36)

{ΔyjFpb,k}
(nc/3×1)

⇐Interpolation
{ϕj

My,k}
(n/3×1)

×Δmj
k,pb (37)

The total number of pad j film surface nodes that connect the fluid
film and pad is nc in the CFD and n in the 3D structure, where n is
105, and nc is determined from the 0.75 mm grid size of the hexa-
hedron mesh. The terms {ϕj

Mx,k} and {ϕj
My,k} are x- and y-direction

eigenvector components of the kth mode {ϕj
M,k} of pad j in Eq. (4).

The modal coordinate displacement perturbation Δmj
k,pb of the kth

mode of pad j is given in Eq. (10).
The values of the perturbed displacements are then substituted

into Δxpb, Δypb, Δpjpb, Δδ
j
pb, Δm

j
k,pb in Eqs. (38) and (39) to

obtain:
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Total perturbed displacements of the pad surface due to pad
tilting, pivot motion, and multiple modes:

Δxjp,i = −
Δδjpb
Rs

xj0,i(y
j
0,i cos θ

j
p − xj0,i sin θ

j
p)

{ }

(Tiltingmotion perturbation terms)

+
Δpjpb
R2
s

xj0,i(x
j
0,i cos θ

j
p + yj0,i sin θ

j
p)

{ }

(Pivot motion perturbation terms)

+
∑m
k=1

xj0,i
R2
s

(ΔxjFpb,k,ix
j
0,i + ΔyjFpb,k,iy

j
0,i)

{ }

(Perturbation terms from total m modes)

(38)

Δyjp,i = −
Δδjpb
Rs

yj0,i(y
j
0,i cos θ

j
p − xj0,i sin θ

j
p)

{ }

(Tiltingmotion perturbation terms)

+
Δpjpb
R2
s

yj0,i(x
j
0,i cos θ

j
p + yj0,i sin θ

j
p)

{ }

(Pivot motion perturbation terms)

+
∑m
k=1

y0
R2
s

(ΔxjFpb,k,ix
j
0,i + ΔyjFpb,k,iy

j
0,i)

{ }
(Perturbation terms from total m modes)

(39)

The derivation of the tilting and pivot motion perturbation terms
are presented in the author’s previous study [52], and the additional
mode perturbation in the final term of Eqs. (38) and (39) are
included to account for pad flexibility. The total perturbed displace-
ments from Eqs. (38) and (39) are prescribed as boundary condi-
tions for the fluid mesh deformation at the pad surfaces. The
resulting force and moment changes are obtained from the pressure
and shear stress distributions at the pad film surface for each pertur-
bation. The results are saved and utilized to calculate the stiffness
matrix.
The perturbed velocity terms are applied through the source

terms of the mass conservation, momentum, and energy conserva-
tion equations for determining damping coefficients. The source
terms are derived from the transient terms of the equations and
can be written in terms of the film thickness as
Continuity equation with the perturbed velocity source term:

sjC,i = −
∂ρf
∂t

( )j

i

≃ −
ρl
hje,i

∂hje,i
∂t

rl,i +
ρv
hje,i

∂hje,i
∂t

(1 − rl,i)

( )
(40)

Momentum equation with the perturbed velocity source term:

sjM,I,i = −
∂ρf uI
∂t

( )j

i

≃ −
ρluI

hje,i

∂hje,i
∂t

rl,i +
ρvuI

hje,i

∂hje,i
∂t

(1 − rl,i)

( ) (41)

Energy equation with the perturbed velocity source term:

sjE,i = −
∂ρf h

j
tot

∂t

( )j

i

≃ −
ρlC p,iT f ,i

hje,i

∂hje,i
∂t

rl,i +
ρvCp,iT f ,i

hje

∂hje,i
∂t

(1 − rl,i)

( ) (42)

The equations represent the source terms for the ith element of
pad j, and I-direction velocity. The source terms are functions of
fluid properties, time derivatives of film thickness, film thickness
at the equilibrium state, and dependent variables such as fluid
volume fraction, velocity, and temperature.

The film thickness and its time derivative are required in the
source terms (40)–(42). In order to calculate the film thickness at
the equilibrium state [52], utilize

hje, i = Cl,p −
(Cl,p − Cl,b)

Rs
{xj0, icos(θ

j
p) + yj0, isin(θ

j
p)}

−
1
Rs

{xse x
j
0, i + yse y

j
0, i}

−pje{cos(θ
j
p)x

j
0, i + sin(θjp)y

j
0, i}

+δjeRs{−sin(θjp)x
j
0, i + cos(θjp)y

j
0, i}

⎡
⎢⎢⎣

⎤
⎥⎥⎦

− {hStr,jse, i + hStr,jpe, i}

(43)

The deformations of the shaft and pad by thermal and physical
loads are given by

hStr,jse, i =
1
Rs

[ΔxStr,jse,i x
j
0, i + ΔyStr,jse, i y

j
0, i] (44)

hStr, jpe, i =
1
Rs

[ΔxStr, jpe, i xj0, i + ΔyStr,jpe, i y
j
0, i] (45)

The superscript j indicates the pad number, the subscript i indi-
cates the element number, and the subscript 0 indicates the initial
nodal location. All element location values x, y, z in Eq. (43) are
expressed in the global x, y, and z coordinates. The equilibrium con-
figuration is obtained from the statics solution, and the equilibrium
positions of all degrees-of-freedom and the relevant geometric
parameter are illustrated in Fig. 4.
The fim thickness time derivative terms in Eqs. (40)–(42) are

affected by pertubations of the time derivatives of the bearing’s
rigid and flexible degrees-of-freedom Δẋ pb, Δẏ pb, Δ ṗjpb,Δδ̇

j
pb,

Δṁj
k,pb. This is shown explicitly by the following equations

∂hje,i
∂t

= −
1
Rs

{Δẋ pbxj0,i + Δẏ pby
j
0,i}

(shaft translational motion velocity perturbation terms)

−Δ ṗjpb{cos(θ
j
p)x

j
0,i + sin(θjp)y

j
0,i}

(Pivot motion velocity perturbation terms)

+Δδ̇jpbRs{−sin(θjp)x
j
0,i + cos(θjp)y

j
0,i}

(Tiltingmotion velocity perturbation terms)

+
∑m
k=1

{ΔẋjFpb,k,ix
j
0,i + ΔẏjFpb,k,iy

j
0,i}

(kth mode velocity perturbation terms)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(46)

{ΔẋjFpb,k}
(nc/3×1)

⇐Interpolation
{ϕj

Mx,k}
(n/3×1)

×Δṁj
k,pb (47)

{ΔẏjFpb,k}
(nc/3×1)

⇐Interpolation
{ϕj

My,k}
(n/3×1)

×Δṁj
k,pb (48)

The kth flexible pad modal coordinate’s perturbation Δṁj
k,pb of

pad j is implicitly included in Eq. (46) via the x and y direction dis-
placements ΔẋjFpb,k,i, Δẏ

j
Fpb,k,i, as shown by Eqs. (47) and (48). The

modal coordinate velocity perturbation Δṁj
k,pb for the kth mode of

pad j is defined in Eq. (11). Equation (46) is derived from the
film thickness model after changing θ coordinate to x–y coordinate.
The film thickness time derivative is substituted into the source
terms (40)–(42) for each perturbation in order, while maintaining
the equilibrium film thickness obtained from the static calculation.
The perturbed force results are saved for each velocity perturbation,
and they are then utilized to calculate the damping coefficients, sim-
ilarly with the stiffness coefficient procedure.

2.4 Calculation Procedure. The approach to use CFD for the
static analysis of rigid pad TPJB is presented in Ref. [51] and is also
employed in this study. The calculation process for obtaining TPJB
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dynamic coefficients, including pad flexibility effects, utilizes
MATLAB coding, PYTHON coding, and a commercial CFD solver
during each perturbation computation. As illustrated in Fig. 5, the
MATLAB code calculates and assembles the stiffness and mass
matrix of the pads and determines the eigenvectors. This code
also interpolates perturbation generated pressure and shear stress
distributions at the pad surface from the CFDmodel into equivalent,
3D structure, and nodal forces. Finally, the MATLAB code utilizes
these forces to determine the modal forces in the structural model,
in order to generate the full bearing dynamic coefficient matrices.
These coefficients are, in turn, used to calculate the frequency
reduce dynamic coefficients of the TPJB. The primary role of the
CFD solver is to determine the perturbed forces resulting from
the modal-based displacement and velocity perturbations. Each per-
turbation is controlled by the Job script based on the PYTHON code.

2.5 Selection of Flexible Pad Modes for Dynamic
Coefficients. Selecting a minimal set of dominant flexible pad
modes can provide a significant reduction in computational time
when including pad flexibility effects in the calculation of
dynamic coefficients. This may be accomplished by considering
the effects of the modes on dynamic coefficient for representative
parameter sets, as shown in Table 3. The Reynolds film model is
utilized in this study to economize on computation time. Mode
shapes may be classified according to distinguishing geometric fea-
tures, as illustrated in Fig. 6. Class A modes have symmetry about
both the x–y and y–z planes. Class B modes are symmetric only
about the x–y plane. Class C modes lack symmetry about either
plane. Figure 6 shows the lowest mode in each class and corre-
sponds to the nominal parameter set in Table 3.

The minimal set of dominant modes for this example is identified
via inspection of the dynamic coefficient for all combinations of the
modes in Fig. 6, according to class.
The lowest 20 modes are searched to determine the dominant

modes for evaluating the dynamic coefficient, including pad flexi-
bility effects. The selection of 20 as the appropriate number of
retained modes is based on balancing accuracy and computation
time [31], when considering eccentricity ratio, attitude angle, film
thickness, stiffness, and damping. Pivot stiffness and pad thermal
deformation are neglected in the search to focus primarily on pad
flexibility effects. The pivot type is still considered, though, in
terms of the boundary condition, it exerts on the pad’s 3D model.
The boundary condition is either fixed along a line (cylindrical
pivot) or at a point (spherical pivot). The calculation procedure
for comparing the dynamic coefficient results for the full 20 mode
case versus the reduced mode (m) cases is illustrated in Fig. 7.
The best mode combination with the minimum error is extracted
for the selected m mode case. The error is defined by the relative
difference between the direct dynamic coefficients with 20 modes
versus the selected m modes.
The best mode number combinations are presented as cases 1–9

in Table 4. The error relative to the full 20 mode simulation is less
than 0.5% for all cases, and over all frequency reduced stiffness and
damping coefficients. This study shows that flexible mode numbers
2–5 have the greatest effect on accuracy, the first bending mode is
the dominant mode shape, and the shape of the class A modes
produce the most significant perturbation modal forces. The signif-
icance of the class A and B modes is comparable for the case of 0.6
offsets (Case 8). Summarizing for this example, utilizing 4 or 5
modes from Class A and Class B is sufficient for determining the
dynamic coefficients including pad flexibility.

Fig. 5 Procedure for calculating dynamic coefficients including multi-mode pad flexibility
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3 Results Comparison of the Reynolds Versus
Computational Fluid Dynamics Models With Pad
Flexibility
This section presents a comparison between TEHD, CFD, and

TEHD Reynolds models, including pad flexibility effects. The
models include leading-edge film temperatures that are prescribed
(without mixing), and those that result from mixing of supply and
carryover flows between pads, in the operating speed range from
3000 to 15,000 rpm [51]. The pad inlet (leading edge) and outlet
(trailing edge) boundaries are prescribed with constant temperature
(40 °C) and pressure (132 kPa) for the “without Mixing” condi-
tions. The CFD and Reynolds models compare closely for the

prescribed leading edge (without mixing) film temperature case.
This validates the CFD model, which has expected results very
similar to the Reynolds model in the thin-film regime, given the
same boundary conditions [51]. The next step was to compare the
approaches, including mixing between pads and pad flexibility
(which was ignored in Ref. [51]). The actual BP geometry with
3D thermal flow is included in the “with Mixing” condition of
CFD approach. The Reynolds model employs the MC with 0.4
and 1.0 extremes in the “with Mixing” condition [51].
The input parameters are given in Table 5, along with the thermal

boundary condition of a convection heat transfer coefficient of
50 W/m2 and ambient temperature of 30 °C applied on the shaft
and pad outer surfaces. The class A type modes (Numbers 3, 8,
10, 15) are employed in the flexible pad, CFD simulation, as
explained in Sec. 2.5. The CFD model employs 451,834 elements,
which is discussed in the grid study of the author’s prior paper [51].
Also, the Jeffcott rotor mass for determining log decrements is
1019 kg. The lubricant is ISO-32, and the viscosity-temperature
relation is an Andrade curve fit from two measured viscosity-
temperature pairs, i.e, a 40 °C reference temperature (Tref) and
100 °C second temperature.
In Part I, the entire (full) bearing model is simulated, including all

pads, BPs, journal, film, etc. For the case when pad flexibility is
included, the TEHD Reynolds and CFD model requires 1.07 h
and 69 h wall clock times, respectively. The Reynolds model uti-
lizes a single core of Intel Xeon CPU E5-1650 v4 3.6 GHz, and
the CFD takes advantage of 12 cores of a computer server based
on the dual Intel Xeon 2.5 GHz E5-2670 v2 (TAMU High Perfor-
mance Research Computing Center HPRC). Part II utilizes a train-
ing set consisting of 1000s of different parameter value sets for use
with the machine learning algorithm. The full bearing is not
included in the training set CFD, which would be computationally
impractical. Instead, the model is limited to the BP region in order to
utilize CFD to determine MCs for the Reynolds model. These runs
are made with up to 40 cases executing in parallel to reduce overall

Table 3 Case studies for dominant mode identification

Input parameters N Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Shaft radius (mm) 50.8 76.2 50.8 50.8 50.8 50.8 50.8 50.8 50.8 50.8
Bearing length (mm) 50.8 50.8 101.6 50.8 50.8 50.8 50.8 50.8 50.8 50.8
Bearing clearance (um) 74.9 112 74.9 60 74.9 74.9 74.9 74.9 74.9 74.9
Pad arc length (deg) 60 60 60 60 56 60 60 60 60 60
Pad thickness (mm) 12.7 19.1 12.7 12.7 12.7 19.1 12.7 12.7 12.7 12.7
Rotating speed (krpm) 15 15 15 15 15 15 3 15 15 15
Applied load (kN) 5 5 5 5 5 5 5 10 5 5
Offset 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.5
Pivot type Cyn. Cyn. Cyn. Cyn. Cyn. Cyn. Cyn. Cyn. Cyn. Sph.

Note: N: nominal case; Cyn.: cylindrical type pivot; and Sph.: spherical-type pivot.

Fig. 6 Classification of pad mode shapes: (a) Class A: x–y and y–z symmetry, (b) Class B: x–y symmetry, and
(c) Class C: non-symmetric

Fig. 7 Calculation procedure for determining best mode
combinations
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wall clock time. The between pad BP only model introduces some
approximations that are explained in Part II.
Static response results and dynamic response results are pre-

sented in Figs. 8–10, respectively, for the “with pad flexibility”
model. The static and dynamic results show excellent agreement
between the Reynolds model and the CFD model for the “without
Mixing” condition case. This supports the validity of the CFD
approach for the pad region and for the pad flexibility model. The
“without Mixing” condition results are very insensitive to pad flex-
ibility, except for stiffness and damping in Figs. 9(a) and 9(b) and
Figs. 10(a) and 10(b). This is consistent with past studies
[6,11,31,23,34] showing that pad flexibility lowers damping and
also affects stiffness.
In contrast to the “without Mixing” results, pad flexibility has a

more significant effect in the “with mixing” results, especially at
higher speeds. The eccentricity ratio in the CFD model is seen to
increase (+20.6% at 15 krpm) when pad flexibility is included in
the “with mixing” (BP) case, as shown in Fig. 8(a-2). A plausible
explanation for this is that the pressure on the pad surface
deforms the bottom pad, and this results in a slight lowering of
the journal.
Figures 9 and 10 show −16.4% and −16.6% decreases in the syn-

chronously reduced (Sec. 2.2) x-direction direct stiffness and
x-direction direct damping, respectively, when pad flexibility is
included in the CFD model. The y-direction damping and stiffness

show similar reductions in the CFD model when pad flexibility is
included. The comparable decrease of the stiffness and damping
coefficients causes a reduction of the log decrement, as shown in
Figs. 9(c-2) and 10(c-2), which implies the possible reduction of
the rotor-bearing system stability margin.
The sensitivity of the Reynolds results to the MC is significant,

except for eccentricity ratio, which shows increased sensitivity
with speed. This result shows similar trends with that reported in
the earlier study [51,52]. Some Reynolds results (eccentricity
ratio, stiffness coefficient, damping coefficient, and log decrement)
show a disparity with the CFD model for all values of the MC.
Some CFD results (peak pad temperature and shaft average temper-
ature) fall within the Reynolds result bounds (MC equals 0.4 and
1.0); however, the MC needed to make the two approaches agree
differs depending on the result considered and the operating
speed. This MC value is near 1.0 for shaft average temperature,
for rpm <9,000, but MC in the range (0.4–1.0) cannot match
results at higher rpm.
The CFD and Reynolds models were in close agreement without

mixing because the CFD pad inlet temperature distributions were
imposed to be uniform in the axial and radial directions. The
higher fidelity CFD model, including between pad thermal-flow
effects, yields pad inlet temperature distributions that are non-
uniform at the pad inlets. This causes significant localized thermal
heat flow into the shaft at the leading edge. This phenomenon is

Table 4 Best mode combinations with below 0.5% error and the mode classifications

Case No. Flexible mode No. m

Best mode number
combinations

Error (%)

Full modes, 1–20 (U)

Class Class

A B C A B C

N 3 3* 10 15 × × 0.37 3* 8 10 15 18 19 20 7 14 16 U—(A+B)
1 2 4* 8 × × 0.42 4* 8 11 14 7 10 15 17 18
2 2 3* 15 × × 0.44 3* 12 15 17 20 5 7 9 10 18
3 4 3* 8 10 15 × × 0.40 3* 8 10 15 18 19 20 7 14 16
4 3 3* 10 15 × × 0.17 3* 8 10 15 17 19 20 7 9 14 16
5 3 4* 8 14 × × 0.29 4* 8 10 14 17 19 7 12 15 16 20
6 2 3* 10 × × 0.49 3* 8 10 15 18 19 20 7 14 16
7 4 3* 8 10 15 × × 0.20 3* 8 10 15 18 19 20 7 14 16
8 5 4* 9 7 8 17 × 0.22 4 9 14 16 19 20 7 8 11 15 17
9 3 4* 8 10 × × 0.33 4 8 10 14 17 19 20 6 11 15 16

Note: *First bending mode; N: nominal case.

Table 5 Input parameters for CFD simulation model

Parameters Value Parameters Value

Shaft diameter (mm) 101.6 Fluid property, ISO 32
Bearing length (mm) 50.8 Liquid density (kg/m3) 860
Bearing clearance (mm) 0.0749 Liquid viscosity (Pa s) 0.03424e−0.0304(Tf−Tref )

Number of pads 5 Liquid specific heat (J/kg °C) 2000
Pad thickness (mm) 12.7 Liquid heat conductivity (W/mK) 0.133
Pad offset 0.5 Vapor density (kg/m3) 0.029
Pad arc length (deg) 60 Vapor viscosity (Pa s) 9e-6
BP height (mm) 5.2 Vapor specific heat (J/kg°C) 1000
BP nozzle hydraulic diameter (mm) 1.8 Vapor heat conductivity (W/mK) 0.026
BP seal radial clearance (mm) 0.425 Cavitation pressure (kPa g) −90
Applied load (N) 5000 Solid property, steel (pad, shaft, and pivot)
Preload 0.5 Density (kg/m3) 7850
Operating speed (krpm) 3–15 Specific heat (J/kg°C) 434
Supply pressure (kPa) 132 Heat conductivity (J/m°C) 60.5
Pivot configuration (cylindrical pivot) Young’s modulus (GPa) 210
Circumferential radius (pivot), (mm) 62 Poisson’s ratio 0.29
Axial radius (pivot), (mm) 1270 Thermal expansion coefficient (1/°C) 1.1 × 10−5

Circumferential radius (housing) (mm) −69.7 Zero strain reference temperature (°C) 35
Axial radius (housing) (mm) ∞
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Fig. 8 Comparison of static performance with and w/o pad flexibility and w/o (1) and with (2) mixing: (a) eccentricity ratio,
(b) shaft average temperature, and (c) max. pad 5 temperature.

Fig. 9 Comparison of dynamics results with pad flexibility w/o (1) and with (2) mixing: (a) X stiffness Kxx, (b) X damping
Cxx, and (c) X log decrement
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not represented in the Reynolds model for any value of MC, since
the Reynolds model assumes uniform inlet temperature distribu-
tions. Consequently, the CFD results do not need to fall within
the bounds of the Reynolds model for MC—0.4 and 1.0.

4 Comparison With Experimental Results
The TEHD CFD model with pad flexibility effect was validated

by comparison of predictions with the experimental results of Carter
[53] and Kulhanek [54]. The TPJB in their test rig is shown in
Fig. 11, and the researchers employed the same Leading Edge
Groove (LEG) TPJB. Carter [53] tested a 0.6 pad offset bearing,
and Kulhanek [54] tested both 0.5 and 0.6 pad offset cases. The
0.5 pad offset cases are compared with Kulhanek [54]. The 0.6
pad offset cases are compared with a blend of Carter [53] and Kul-
hanek [54] test results, as explained here. The pad temperature is
compared with Carter [53], since temperature measurements are
not provided in Kulhanek [54]. The eccentricity ratio and
dynamic coefficients are compared with Kulhanek [54] because
of its improved measurement probes. Carter [53] results are also uti-
lized for estimating some uncertain magnitudes.
Suh and Palazzolo [31] also correlated their theoretical work

(TEHD Reynolds) with the 0.5 pad offset measurements of Kulha-
nek [54]. However, the pivot stiffness was unknown and assumed to
be similar to one in a different test rig. In addition, the convective
heat transfer coefficients of the shaft and pad outer surfaces were
underestimated. The present simulation model utilizes the manufac-
tured pivot configuration, and the material properties and heat con-
vection on the pad and shaft surfaces are evaluated approximately
from the CFD simulation.
Input parameters are shown in Table 6 for the two offset cases,

0.5 and 0.6. Each case has a load between pad (LBP) of 6337 N
(1034 kPa) and 10559 N (1723 kPa). The load and rotation direc-
tions are shown in Figs. 11(a) and 11(b). Total pressure at the oil
supply inlet is obtained from the measured static pressure and
supply oil flowrate, as shown in Table 7 and is prescribed at the

oil supply inlet in the CFD model. A 150 kPa static pressure is
applied at the trailing and leading edges for all cases with the Rey-
nolds model. All other input parameters and boundary conditions
are identical to those in Ref. [51]. The measurement uncertainty
of the stiffness and damping was reported to be relatively small
with a maximum of about 13% and generally less than 5%.
Figures 12 and 13 show static result comparisons with test, CFD,

and Reynolds predictions. Figures 12(a-1) and 12(a-2) show good
agreement between test and CFD, and poor between test and Rey-
nolds for the oil supply flowrate prediction. The latter result is due
to the inability of the Reynolds approach to model BP flow. The
CFD results slightly over-predict the supply flowrate, since it does
not consider full oil flow downstream of the bearing, but the error
is small. The supply flowrate is similar for both load conditions.
Figure 12(b) shows eccentricity ratio results, and the CFD and

Reynolds models show good agreement with the test results for
both load conditions. CFD provides better agreement with test
than Reynolds in the 0.5 offset case. Reynolds, with MC-0.4,
shows better agreement with test than the CFD in the 0.6 offset
case. However, this selection of the MC yields a larger discrepancy
with test than CFD, for the pad 4 temperature prediction in
Fig. 13(b). Thus, optimizing the Reynolds model with respect to
MC selection is unreliable if only a single output is considered,
and therefore, CFD provides a more dependable approach.
Figure 13 compares measured and predicted pad temperatures.

Figure 13(a) shows excellent agreement between test, Reynolds,
and CFD for upper pad temperature (Pad 1) with 1034 and
1723 kPa loads. Figure 13(b) provides a clear example of how
uncertainty in the MC can yield highly inaccurate predictions
from the Reynolds approach, while the CFD maintains very good
agreement with the test results. The divergence between CFD and
test at high speeds and 1723 kPa load results from the measured atti-
tude angle being larger than the CFD predicted one. The larger atti-
tude angle increases the pad 5 temperature while decreasing the pad
4 temperature. However, even in this case, the errors between
theory and experiment are small.

Fig. 10 Comparison of dynamics results with pad flexibility w/o (1) and with (2) Mixing: (a) Y stiffness Kyy, (b) Y damping
Cyy, and (c) Y log decrement
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Figures 14 and 15 compare measured and predicted non-
dimensional, synchronously reduced dynamic coefficients, in the x
and y directions, respectively. Figure 14(a-1) shows slightly better
agreement between Reynolds and test, than the CFD and test, for
the 0.5 offset case stiffness Kxx. Figures 14(a-2), 14(b-1), and
14(b-2) show much better agreement between CFD and test, com-
pared with Reynolds and test, for stiffness Kxx (offset= 0.6) and
dampingCxx (offsets= 0.5, 0.6), for both load cases. The y-direction
stiffness Kyy and damping Cyy are also more accurately predicted
with the CFD approach, as compared with the Reynolds approach,
for all offset and load conditions, as shown in Fig. 15.
Kulhanek [54] and Carter [53] utilized the same test rig.

However, Kulhanek [54] reported that his use of modified probe
locations prevented the over-prediction of dynamic coefficient in
Carter [53] due to excessive housing flexibility. Figure 15(a-2)
and 15(b-2) show that Carter [53] measurements are considerable
larger than Kulhanek [54] in all 0.6 offset results. The CFD
results are consistent with Kulhanek [54].
This correlation study showed very good agreement between the

CFD-TEHD approach and test for all cases, and generally good
agreement between the Reynolds-TEHD approach and test. An

exception was damping for the 0.5 offset case where the
Reynolds-TEHD approach performed poorly. The superiority of
the CFD over the Reynolds approach was confirmed in most of
the results. Notably, the negative effect of MC uncertainty on Rey-
nolds results was especially acute for pad temperature prediction.
All CFD and Reynolds model results in this section included pad

flexibility effect. Table 8 shows the dynamic coefficient percent

Fig. 11 Computational domain for a LEG TPJB in Carter [53] and Kulhanek [54]: (a) cross-
sectional view and (b) TPJB overview

Table 6 Input parameters of LEG TPJB CFD simulation

Parameters

Value

0.5 Offset [54] 0.6 Offset [53], [54]

Shaft diameter (mm) 101.587
Bearing length (mm) 60.325
Bearing clearance (mm) 0.0814 0.0792
Number of pads 5
Pad thickness (mm) 11.5
Pad thickness at pivot (mm) 18.5
Pad arc length (deg) 57.87
Applied load (N) (1) 6337 (2) 10,559
Preload 0.273 0.283
Operating speed (krpm) 7–16 4–13
Pivot type Rocker (Cylindrical)
Load type LBP
Lubricant ISO 32 [54]
Outside HC (W/m2K) (1) 1500 (Pad) (2) 250 (Shaft)
Ambient temperature (C) (1) 43.3 (Pad) (2) 20 (Shaft)
Supply oil temperature (C) 43.3
Selected pad flexible modes 4,10,20 4,7,9

Solid property, steel
Density (kg/m3) 7850
Heat conductivity (J/m °C) 42.6
Young’s modulus (GPa) 200
Poisson’s ratio 0.29
Thermal expansion coef. (1/°C) 1.0e–5
Reference temperature (°C) 43.3

Note: HC: heat transfer coefficient.

Table 7 Total pressure at supply oil inlet

Operating speed (rpm) 4000 7000 10000 13,000 16,000

Total
pressure
(kPa)

0.5 Offset
(6337 N)

– 262 286 526 787

0.5 Offset
(10,559 N)

– 273 284 530 791

0.6 Offset
(6337 N)

246 310 284 469 –

0.6 Offset
(10,559 N)

255 310 290 451 –
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Fig. 12 Static results comparison (1): (a) supply flowrate and (b) eccentricity ratio

Fig. 13 Static results comparison (2): (a) pad 1 temperature at trailing edge and (b) pad 4 temper-
ature at trailing edge
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Fig. 14 Dynamic results comparison (1): (a) non-dimensional direct stiffness, Kxx, and (b) non-
dimensional direct damping, Cxx

Fig. 15 Dynamic results comparison (2): (a) non-dimensional direct stiffness, Kyy, and (b) non-
dimensional direct damping, Cyy
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deviations due to pad flexibility effect. The stiffness is seen to either
increase or decrease depending on load and offset conditions. The
damping is seen to always decrease, and the reductions are more
significant in higher load and offset conditions.
The relative benefits of the CFD approach over the Reynolds

approach are summarized as follows:

(1) Improved supply flowrate prediction.
(2) Figure 13(b-1) shows that the maximum pad temperature in

the Reynolds model is quite different for MC values of 0.4
and 1.0. This indicates the considerable result uncertainty
due to MC uncertainty and that CFD removes the
uncertainty.

(3) Figures 14(a) and 15(a) show that CFD provides better stiff-
ness prediction than the Reynolds model except at
16,000 rpm with 0.5 offset.

(4) Figures 14(b) and 15(b) show that theReynoldsmodel has sig-
nificant errors for the damping coefficient prediction when
compared with the CFD simulation. Both MC extremes
yield poor agreement. A more detailed study shows that the
cause of the error in the Reynolds model is due to the fact
that the radial and axial temperature distributions are
neglected at the fluid-film leading-edge temperature.

5 Limitation of the Conventional Approach
The conventional Reynolds approach utilizes a bulk flow, mixing

theory to determine an approximate uniform temperature at the inlet
of each pad that depends on the MC selected, prior pad exit

Table 8 Percent changes in Reynold model dynamic
coefficients from including pad flexibility at 13,000 rpm

1034 kPa 1723 kPa

0.5 offset 0.6 offset 0.5 offset 0.6 offset

Kxx +2.5 +1.2 −1.3 −2.1
Kyy +1.5 −0.1 −1.7 −2.9
Cxx −3.3 −4.6 −7.3 −8.3
Cyy −4.5 −6.9 −8.1 −9.8

Fig. 16 Flow behavior along the bearing length

Fig. 17 Oil film temperature distribution at the shaft surface (15,000 rpm): (a) contour, (b) circumferential
average value along the bearing length, (c) at z/L=0, and (d ) at z/L=0.25
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temperatures and flowrates, and supply oil flowrates and tempera-
tures. References [51,52] indicated that a weakness of the conven-
tional, Reynolds MC approach was in the assumption of uniform
inlet temperatures at the pad inlets. Here, we utilize the results of
cases Reynolds-MC0.4, Reynolds-MC1.0, and CFD in Sec. 3 to
illustrate how pad inlet temperatures radically depart from the
uniform temperature assumption, based on detailed 3D modeling
of BP thermal flows with CFD.
Figure 16 depicts how the supplied oil enters the BP region and is

exhausted through the BP side outlet. The cooler supply oil pene-
trates the hot oil film due to its high pressure (Nozzle effect) and
also flows out pushing the film at the BP side outlet. Mixing is
the strongest near the nozzle and at the side outlet, which results
in lower temperature at these locations. The CFD results in
Figs. 17(a) and 17(b) confirm the lowering of oil temperatures
near the shaft surface at these locations. However, the conventional
approach cannot predict these thermal-fluid features near the nozzle
and the resulting axial temperature distribution at the inlet. Instead,

it erroneously predicts higher temperatures near the mid-span,
which CFD predicts to be the cooler region.
The Reynolds model shows fairly uniform trends along the

bearing length (z/L= 0, z/L= 0.25). However, the CFD predictions
vary in the axial direction, as shown by comparing Figs. 17(c) and
17(d ). The temperatures at the middle of the bearing (z/L= 0) have
sudden drops at pad leading edges and gradual increases from
leading to trailing edges, as shown in Fig. 17(c). The temperatures
differ considerably between the two models in Fig. 17(c) and the
maximum CFD predicted temperatures occur at the end of the
bearing, away from the nozzle, as shown in Fig. 17(d ).
Another weakness of the conventional approach is the assump-

tion of a uniform temperature profile in the radial direction at
each pad inlet, as obtained from mixing theory and depicted in
Fig. 18(a). In contrast, the CFD results show that the hot oil carry-
over temperature persists into the leading edge of the next pad,
along with a thermal boundary layer above it, as depicted in
Fig. 18(b). Thus, the film temperature in contact with the journal

Fig. 18 Radial temperature distribution between pads: (a) Reynolds and (b) CFD

Fig. 19 Journal surface heat flux distribution (15,000 rpm): (a) contour, (b) circumferential
average value along the bearing length, (c) at z/L=0, and (d ) at z/L=0.25
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may be much higher than the mixing temperature. The upper part of
the BP inflow in the CFDmodel is first exposed to the cooling effect
mainly by thermal diffusion, as illustrated in Fig. 18(b). The thermal
boundary layer is developed in the process. The uniform, cooler
inlet mixing temperature assumption of the Reynolds model
forms a significantly different heat flux field on the entire journal
surface, which depends on the radial temperature gradient and the
thermal conductivity. The journal heat flux distribution may be
highly dependent on the MC.
The mixing model uniform temperature profile causes a decrease

in the oil temperature at the shaft surface after passing through the
BP. Therefore, negative heat flux (shaft cooling) is predicted at most
leading edges of the Reynolds model except for the pad 3 (132–
192 deg) with the MC 1.0 and pad 4 (204–264 deg) with the MC
1.0 or MC 0.4, as shown in Figs. 19(c) and 19(d ). On the contrary,
all cooling is made adjacent to the bearing mid-span region (z/L=
−0.125–0.125) in the CFD model, due to the nozzle effect, as
shown in Figs. 19(b) and 19(c), and all heating process occurs at
both bearing side regions (z/L=−0.125 to −0.5, 0.125 to 0.5).
Note that the heating dominant region of the CFD model is wider
than the dominant cooling region in Fig. 19(b).
The difference between the heat flux distributions causes an

under-prediction of shaft temperatures in the Reynolds model.
Both the Reynolds and CFD models show substantial cooling
occurs at the Pad 1 (348–48 deg), 2 (60–120 deg), and 5 (276–
336 deg), and intense heating takes place at the Pad 4 (204–
264 deg). The under-predicted shaft temperature in the Reynolds
model yields a thicker film thickness than that in the CFD model,
as shown in Fig. 20(b). Accordingly, the CFD predicted pressures
are higher than their Reynolds counterparts.
Regardless of its small volumetric portion, the BP region with its

3D physics produces a complex MC distribution along the bearing
axial direction, and radial temperature distribution at the pad inlet.
Finally, the two-dimensional temperature distribution at the pad
inlet leads to very different temperature, pressure, heat flux,
dynamic viscosity, and film thickness fields compared with the con-
ventional approach. This is the reason that several results of the
Reynolds model deviate from the CFD results in Sec. 3, even if
adjusting MC values from 0.4 to 1.0.

6 Summary and Conclusion
This paper is an extension of the prior work [51,52] for TEHD

CFD modeling of a TPJB. The previous study presented modeling
methodology with: (1) multiphase flow, (2) thermal-fluid, (3) tran-
sitional turbulence, and (4) thermal deformation of the shaft and
pads. The pad flexibility effect, which is known to affect TPJB
damping significantly, was not included. The present work

advanced the TEHD CFD TPJB model by inclusion of multiple-
mode pad flexibility effect and presentation of the corresponding
methodology. Formulas for the total perturbed shaft and pad displa-
cement distributions on the mesh deformation boundaries are pro-
vided for calculating stiffness coefficients.
Formulas for the distributed velocity perturbations for computing

damping coefficient were derived and are applied in the fluid film
control volumes. Computation time reduction was addressed in
the areas of effective pad mode selection, solution procedures,
and choice of numerical approach. The advanced TEHD CFD
TPJB model was validated by comparing it with the experimental
work from the literature.
Finally, limitations of the BP mixing assumption of the conven-

tional Reynolds TPJB modeling approach were identified by com-
paring results from the CFD and Reynolds models. Specifically,
axial and circumferential distributions of pressure, temperature,
heat flux, dynamic viscosity, and film thickness were contrasted
between the CFD and conventional Reynolds approach.
Key conclusions of the paper include the following:

• An initial check on the TEHD CFD model was performed to
compare its predictions with a TEHD Reynolds solution
when the detailed BP thermal flow field is ignored and
instead represented by pad thermal and pressure boundary con-
ditions. The thin film only model is known to be solved with
high accuracy by the TEHD Reynold approach, so its excellent
agreement with the TEHD CFD model provided a strong
means of validation for the latter approach.

• The BP regions were included with either a complex 3D CFD
model in the TEHD CFD approach, or a highly simplified bulk
flow Mixing model in the TEHD Reynolds approach. The
CFD results were either bounded by the extremes of the
Mixing approach results (MC= 0.4, 1.0) or lied outside of
this range of results.

• Including pad flexibility had significant influence on eccentric-
ity ratio (Max. +20.6%), stiffness (−16.4%), and damping
coefficient (Max. −16.6%).

• A comparison of results from the TEHD CFD model showed
very good agreement with experimental results obtained from
the literature, for supply pressure, supply flowrate, eccentricity
ratio, pad temperature, stiffness, and damping coefficient. The
agreement was significantly better than that between the con-
ventional TEHD Reynolds approach and the experimental
results, except for the x-direction bearing stiffness.

• The assumptions of the conventional TEHD Reynolds
approach include invariance of the temperature in the radial
and axial directions at each pad inlet. A study was performed
utilizing the TEHD CFD approach with detailed 3D BP
models as a benchmark to investigate the validity of the

Fig. 20 Pressure and film thickness distribution at shaft surface (15,000 rpm): (a) pressure and
(b) film thickness
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TEHD—Reynolds leading edge temperature assumptions. It
was confirmed that these assumptions were significantly vio-
lated and could result in pressure, temperature, dynamic vis-
cosity, heat flux, and film thickness distribution significantly
different from the TEHD CFD results.

• It is remarkable that including the three-dimensional BP model
significantly affected predictions of bearing performance.
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Nomenclature
{ f} = force vector, N
h = film thickness, m
k = stiffness, N/m

[k] = stiffness matrix, N/m
m = mass, kg

[m] = mass matrix, kg
p = pressure, Pa
r = volume fraction
t = time, s
u = velocity, m/s

{x} = total displacement vector, m
F = force in modal coordinate, N

{F} = force vector in modal coordinate, N
[K ] = stiffness matrix in modal coordinate, N/m
[M ] = mass matrix in modal coordinate, m
R = radius, m
T = temperature, °C

[ĉJJ ] = frequency reduced damping coefficient matrix, Ns/m
[k̂JJ ] = frequency reduced stiffness coefficient matrix, N/m

kf = turbulent kinetic energy, m2/s2

mpr = preload
sC = mass source per unit volume, kg/m3

sE = energy source per unit volume, J/m3 s
sM = momentum source per unit volume, N/m3

x0 = initial x position in global coordinate, m
y0 = initial y position in global coordinate, m
Cp = specific heat, J/kg K
IT = pad moment of inertia, kg m2

Cl = clearance, m
γ = turbulence intermittency

δdec = log decrement
Δmpb = modal displacement perturbation, m
Δṁ pb = modal velocity perturbation, m/s
Δppb = pad pivot displacement perturbation, m
Δ ṗ pb = pad pivot velocity perturbation, m
Δxpb = shaft x displacement perturbation, m
Δẋ pb = shaft x velocity perturbation, m
ΔXse = total nodal shaft displacement at equilibrium state, m
ΔXpe = total nodal pad displacement at equilibrium state, m
Δypb = shaft y displacement perturbation, m
Δẏ pb = shaft y velocity perturbation, m
Δδpb = pad angular displacement perturbation, deg
Δδ̇ pb = pad angular velocity perturbation, deg

θp = pad angular position, deg
λ = eigenvalue

[λ] = eigenvalue matrix
ν = synchronous frequency, 1/s

{ξ} = total displacement vector in modal coordinate, m
ρ = density, kg/m3

{ϕ} = eigenvetor (mode shape)
[ϕM] = selected eigenvector matrix

ω = natural frequency, 1/s
ωf = turbulent frequency, 1/s
Ωs = shaft speed, rad/s

Superscript

j = pad number index

Subscripts

b = bearing
brg = full bearing
e = equilibrium state
f = fluid
F = flexible pad
i = node number index or rotor eigenvalue number index
I = velocity (u,v,w) index
J = journal
k = mode number index (or l)
l = liquid phase
p = pad
pe = pad equilibrium
pvt = pivot
R = rigid pad
s = shaft
se = shaft equilibrium
v = vapor phase
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