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A B S T R A C T   

Gas turbine and other machinery rotating assemblies are frequently manufactured as multiple 
components for cost and component alignment reasons. Butt joint, Hirth, and Curvic coupling are 
widely used for this purpose. Localized joint flexibility in these preloaded couplings introduce 
non-beamlike behavior which affects rotordynamic critical speeds, imbalance response and sta
bility, rendering a conventional beam model inadequate. 3D solid finite element models of the 
couplings with Greenwood Williamson (GW) asperity interface features provide accurate repre
sentations of the couplings, however computational costs are impractical for use in an industrial 
design setting, which are limited to beam element models. A novel modeling approach for the 
coupling is developed that derives equivalent beam element Young’s modulus and shear form 
factor properties, that replicate the bending behavior of the high fidelity 3D solid models, 
including GW based interface asperity stiffness. The equivalent beam models for butt, Hirth and 
Curvic couplings are validated using measured natural frequencies as a benchmark, for a range of 
through-bolt preloads. The equivalent beam model and the 3D solid model in this correlation 
incorporate GW contact models derived with experimentally measured surface roughness pa
rameters. An Ecoupling sensitivity study for GW surface roughness parameters was conducted and 
showed a significant level of sensitivity. The effect of the coupling on an industrial class rotor’s 
critical speed is included to illustrate usage of the approach.   

1. Introduction 

Rotating machines such as gas turbines or aero-engines are complex dynamical systems, frequently assembled with components in 
a stacked, preloaded assembly. The components are joined by butt joints, Hirth or Curvic couplings that facilitate assembly with 
precision alignment and centering capabilities. Butt joint couplings are used in the stacked rotor of the high-pressure centrifugal 
compressor [1]. Butt joints are smooth, toothless connections between components along the shaft, characterized by a hollow cy
lindrical shape. In contrast, axially preloaded high-power, gas turbine shafts may use Hirth coupling that have straight teeth, providing 
self-centering, high-torque transmission and clearance-free [2]. A major application of Curvic couplings is aircraft jet engine shafting 
[3]. The main difference between the Hirth coupling and the Curvic coupling lies in the shape of their teeth. The Curvic coupling 
incorporates curved-shaped teeth, with one set being convex and the other set being concave. Fig. 1 illustrates the process of 
manufacturing convex and concave teeth for Curvic couplings. All of these couplings possess localized contact interface flexibilities 

* Corresponding author. 
E-mail address: a-palazzolo@tamu.edu (A. Palazzolo).  

Contents lists available at ScienceDirect 

Journal of Sound and Vibration 

journal homepage: www.elsevier.com/locate/jsvi 

https://doi.org/10.1016/j.jsv.2023.117921 
Received 5 November 2022; Received in revised form 3 June 2023; Accepted 4 July 2023   

mailto:a-palazzolo@tamu.edu
www.sciencedirect.com/science/journal/0022460X
https://www.elsevier.com/locate/jsvi
https://doi.org/10.1016/j.jsv.2023.117921
https://doi.org/10.1016/j.jsv.2023.117921
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsv.2023.117921&domain=pdf
https://doi.org/10.1016/j.jsv.2023.117921


Journal of Sound and Vibration 565 (2023) 117921

2

Nomenclature 

FEM finite element method 
M mass matrix 
C damping matrix 
CR Coriolis matrix 
Cb,r bearing damping matrix in the rotor-fixed coordinate system 
K stiffness matrix 
Ks structural stiffness matrix 
Kd dynamic stiffness matrix 
Kc contact stiffness matrix 
Kσ stress stiffness matrix 
Kb,r bearing stiffness matrix in the rotor-fixed coordinate system 
F(t) external force vector 
f c centrifugal force vector 
f contact force vector 
Ω rotor spin speed 
q(t) displacement vector 
γ shear strain 
x1 axial direction 
x2 lateral direction 
u1 displacement in x1 direction 
u2 displacement of the neutral axis in x2 direction 
θ3 neutral axis slope 
τ̂ effective shear stress 
G shear modulus of elasticity 
ν Poisson’s ratio. 
α ratio of inner diameter to outer diameter 
As effective areas 
k shear form factor 
Φ transverse shear effect 
E elastic Young’s modulus 
I area moment of inertia 
A cross sectional area 
L element length of beams 
he element contact stiffness matrix 
Nie element inter-domain shape function matrix 
kc

e element contact stiffness coefficient matrix 
kcn

e element normal contact stiffness in the ee
n Direction 

kct1
e element tangential contact stiffness in ut1

e direction 
kct2

e element tangential contact stiffness in ut2
e direction 

en
e unit normal vector of the contact plane 

et1
e orthogonal vector 1 tangent to the contact plane 

et2
e orthogonal vector 2 tangent to the contact plane 

ns number of nodes in contact face 
nG number of Gauss quadrature integration points 
ξ1α Gauss quadrature point in α direction 
ξ2β Gauss quadrature point in β direction 
wα weight factor corresponding to ξ1α 
wβ weight factor corresponding to ξ2β 
J Jacobian matrix 
Rs average radius of asperity 
ηs area density 
σs standard deviation of height 
z(x) surface profiles 
mi zeroth, second, and fourth spectral moments, (i = 0, 2, 4) 
E’ Composite plane-stress modulus 
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resulting in a decrease in shaft lateral stiffness. 
Most industrial applications use beam models for rotordynamic studies, which generally provide high accuracy for low compu

tational cost. Stacked, preloaded rotating machinery assemblies pose a unique challenge though for beam based rotordynamic 
modeling, due to localized flexibilities at coupling joints. Neglect of these flexibilities using a conventional stepped beam rotordynamic 
model leads to overpredictions of bending natural frequencies and critical speeds [5]. This deficiency may be mitigated by using a high 
fidelity 3D solid, finite element model, incorporating an asperity interface model representing the preloaded joint flexibility. However, 
the approach is impractical when considering the extensive parametric studies required in developing a high performance machine. 

A key feature of the preloaded component joint is the flexibility that arises from the asperity distribution occurring at the mating 
interfaces. Greenwood Williamson (GW) model [6] is one of the most reliable contact mechanics models that is frequently used to 
simulate the interaction between preloaded rough surfaces. There are other contact models. Chang et al. [7] developed elastic-plastic 
asperity volume conservation model by accounting for volume conservation of the contact region. Brake [8] developed contact models 
with three regimes: elastic, mixed elastic – plastic, and fully plastic. Whitehouse [9] developed their own model with autocorrelation 
function and found a relationship with the GW model. Although the GW model has been advanced by subsequent models it has been 
well tested for accuracy, and is utilized here for illustration. Gao et al. [10] employed a GW interface model for normal contact stiffness 
to obtain an equivalent flexural stiffness applied to contact layers. Peng et al. [11] obtained equivalent bending stiffness from GW 

Pc contact pressure 
Fn(h) parabolic cylinder function 
ϕ∗(s) Gaussian distribution function 
U Whittaker function 
K modified Bessel function of the second kind 
Ra arithmetical mean deviation 
Rq root mean square 
MSE MEAN-squared error 
R2 coefficient of determination 
yi actual values 
ŷi calculated values 
y mean value of y 
Ecoupling Equivalent Young’s modulus 
OD outer diameter 
ID inner diameter 
ρ density 
Φcoupling equivalent transverse shear effect 
OMA outer member sub-assembly 
IMA inner member sub-assembly 
Umd internal elemental strain energy due to modal deformation 
qmodal modal deformation 
Kbe beam element stiffness matrix  

Fig. 1. Illustration of convex and concave Curvic coupling machining method [4].  
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contact model and used only a Timoshenko beam model to calculate critical speeds. They demonstrated that the calculated critical 
speed of a continuous rotor model without the contact effect is higher than with an elastic or elastic-plastic contact effect. Zhuo et al. 
[12] calculated the bending stiffness of contact interfaces with external bending moment and preload based on the Hertz contact 
theory using the GW model and the finite element method (FEM). They did not consider a curvic coupling or the use of equivalent beam 
elements. Kim et al. [13] used the DYNAMICS R4 beam element commercial software for modal analysis with a preload effect. A 
bending stiffness analysis of the joint couplings was conducted to determine an equivalent stiffness diameter for performing rotor
dynamic analyses Their work was limited to only beam element modeling. Liu et al. [14] obtained equivalent bending stiffness be
tween simply supported discontinuous Timoshenko beams by using simplified torsion and shearing springs to represent the interface. 
External bending and shearing forces were used to calculate stiffness based on the relative displacement of the two parts. They did not 
use solid elements or a GW type contact model. 

Researchers have considered the geometry shape effect of couplings using 3D solid finite elements. Rimpel et al. [1] used an 
empirically derived reduced Young’s modulus of a thin element between the contact surface of a 3D butt joint model. Zhang et al. [15] 
used a 3D butt joint solid finite element model to explore the relationship between contact stress and contact stiffness. The latter was 
varied as a parameter and not based on an asperity roughness model. Croccolo et al. [16] identified the Hirth coupling features, such as 
tooth height h, tooth root radius r, crown clearance s, D and d for outer and inner diameters of the teeth, mean radius Rm, number of the 
teeth z that most heavily influence the interface bending stress. Liu et al. [17] used 3D solid elements with a nonlinear contact in three 
dimensions which is not based on asperity roughness, and limited elastic deformation to the coupling teeth only. The contact flexibility 
was represented with a uniform cylinder modeled with 3D solid elements, and with a reduced Young’s modulus. Oh et al. [18] utilized 
3D solid finite elements with a GW contact to model the full rotating assembly. The results clearly show the importance of contact 
surface roughness and applied preloads in rod-fastened rotors. Kim et al. [19] applied a 3D solid finite element with a GW contact 
model to a shaft with a more geometrically complicated toothed Hirth coupling. The significance of the contact surface area and the 
tooth number were demonstrated. Kim et al. [4] also extended this approach for curved tooth Curvic couplings, using a high-fidelity 3D 
solid finite element with a GW contact model. 

The present study extends the previous studies on butt joints, Hirth couplings, and Curvic couplings with a GW contact model [4,18, 
19] to develop equivalent beam models for the couplings, that can be used in commercial beam based rotordynamic codes. The core 
novelty of the present work lies in obtaining the equivalent beam models for the couplings, based on outputs from high fidelity 3D 
finite element models including asperity interface sub-models. This provides a strong practical contribution to rotordynamics modeling 
practitioners that have rotor modeling software limited to beam elements, which is almost universally the case. The approach provides 
the Young’s modulus and shear form factor constant, which are standard inputs for virtually all rotordynamics codes. The equivalent 
properties are derived by a matching process between the coupling’s beam and high fidelity 3D solid element model predictions for the 
lowest two mode natural frequencies. Extensive comparisons of shaft natural frequencies are made between conventional beam 
models, models with equivalent beam properties, models with 3D solid element models, and measured experimental results, for 
Curvic, Hirth, and butt joints. The modeling methodology is illustrated with a model of an industrial class machine, demonstrating the 
importance of including contact stiffness in the butt, Hirth and Curvic coupling models. The influence of coupling interface surface 
roughness and coupling type on predicted critical speeds is investigated through parametric studies. Surface amplitude parameters are 
frequently used to characterize surface roughness [20]. These include arithmetical mean deviation Ra, root mean square Rq, and 
maximum peak to valley height of the profile Rz. Formulas are developed to provide the GW surface contact parameters needed to 
obtain the interface contact stiffnesses, given measured or mfg. furnished surface amplitude parameters. A procedure is presented to 
obtain the GW parameters from experimental measurements of surface roughness and is verified via linear regression analysis. 

Fig. 2. Bending deformation for Euler-Bernoulli and Timoshenko beams.  
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2. Finite element formulation 

2.1. Beam-type finite elements 

Current industrial practice for rotordynamic analyses employs beam-type FEM rotor models. The beam-type finite element rotor 
model is efficient and accurate for the majority of rotating machine, from fans to turbines to, compressors and even drillstring [21]. It 
has a capability of modeling bending, axial and torsional system has the general form. 

M q̈(t) + C q̇(t) + K q(t) = F(t) (1)  

M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F(t) is the external force vector, and q(t) is the displacement 
vector. Two types of beam elements are Euler-Bernoulli beam and Timoshenko. The former has a constraint that plane cross sections 
remain perpendicular to the neutral axis during bending, while the latter removes this assumption allowing “shear deformation”. The 
present study uses Timoshenko beam elements, with finite element formulation of the element mass and stiffness matrices summarized 
in [22]. 

2.2. Shear form factors and transverse shear effects 

Reference [23] derives the strain displacement relations and shear form factors. With reference to Fig. 2, two kinematic constraints 
apply to the Euler-Bernoulli beam: plane sections remain plane, and are always perpendicular to the neutral axis, which are expressed 
mathematically by 

εBx3 = −
∂

∂x1
(u1) = −

∂
∂x1

(

x2
∂u2

∂x1

)

= − x2
∂

∂x1

(
∂u2

∂x1

)

(2)  

where u2 is the displacement of the neutral axis in the x2 direction. 
The Timoshenko beam model allows the cross section plane to deviate from the normal direction as described by 

εBx3 = − x2
∂

∂x1
(θ3) = − x2

∂θ3

∂x1
(3) 

The shear strain γ in the Timoshenko beam model is 

γx1x2
=

du1

dx2
+

du2

dx1
= − θ3 +

du2

dx1
(4)  

where x1 is the axial direction, and u1 is the displacement in the x1 direction. The shear strain γx1x2
= 0 for the Euler-Bernoulli model 

θ3 =
du2

dx1
,
(
γx1x2

= 0
)

(5) 

The shear strain varies only in the axial location, and the corresponding effective shear stress τ̂ is given by 

τ̂x1x2 (x1) = Gγx1x2
(x1) (6)  

where G is shear modulus of elasticity. The effective shear stress can be related to the average stress by the factor k 

τAVE
x1x2

= k τ̂x1x2 (x1) = k G γx1x2
(x1) (7) 

The shear force becomes 

Vx2 = τAVE
x1x2

A = kAGγx1x2
(x1) (8)  

therefore 

Fig. 3. Hollow cylinder cross section.  
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τ̂x1x2 (x1) =
τAVE

x1x2

k
=

Vx2

kA
=

Vx2

As
(9)  

where As is the effective areas and k is referred as shear form factor. The As and k changes in relation to the geometry of the cross 
section, e.g. for a hollow cylinder (Fig. 3), k is [24] 

k =
6(1 + ν)(1 + α2)

2

(7 + 6ν)(1 + α2)
2
+ (20 + 12ν)α2

(10)  

where ν is Poisson’s ratio. 
The shear form factor k can be utilized to obtain a transverse shear effect ϕ for a beam element, where E is the Young’s modulus, I is 

the area moment of inertia, A is the cross sectional area, and L is the element length. 

ϕ =
12EI

kAGL2 =
24(1 + ν)I

kAL2 (11) 

The Timoshenko beam element stiffness matrix is provided from [23] in Appendix A. 

2.3. Finite element formulation of contact element 

An infinitesimally thin element is required to model the contact stiffness between two sub-domains sharing a common interface 
[25]. Fig. 4 shows two different sub-domains that are in contact. The first sub-domain consists of one hexahedron on the front whereas 
the second sub-domain consists of three hexahedrons on the back. The contact element sharing a common interface is shaded. The 
nodes x1 - x4 in the first domain correspond to the nodes x5 - x8 in the second domain, providing a conformal mesh. 

The structural connection between the two domains is formed by the contact stiffness between two connecting faces. The 
formulation of the finite element for the contact stiffness matrix of the element is derived in [18] and the results shown below. 

he =

∫

Se

(
Ne

i

)T ke
c Ne

i dSe (12)  

ke
c =

(
ee

n

)T ke
cn ee

n +
(
ee

t1

)T ke
ct1 ee

t1 +
(
ee

t2

)T ke
ct2 ee

t2 (13)  

Ne
i =

⎡

⎣
− N1

0
0

0
− N1

0

0
0

− N1

⋯
− Nns

0
0

0
− Nns

0

0
0

− Nns

⃒
⃒
⃒
⃒
⃒
⃒

N1
0
0

0
N1
0

0
0

N1

⋯
Nns
0
0

0
Nns
0

0
0

Nns

⎤

⎦ (14)  

he is the element contact stiffness matrix, Ni
e is the element inter-domain shape function matrix defining the displacement field across 

the contact plane, and ke
c is the element contact stiffness coefficient matrix for a unit area. The term ns in Ni

e represents the number of 
nodes in the contact face, which is four for a hexahedron element. The matrix ke

c can be decomposed into the element normal contact 
stiffness ke

cn in the ee
n direction and the element tangential contact stiffness ke

ct1 and ke
ct2 in the ee

t1 and ee
t2 direction, respectively. The 

element contact stiffness matrix in Eq. (12) is numerically integrated with Gauss quadrature [23] 

Fig. 4. Contact elements with shared interface (shaded).  
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he =
∑nG

α=1

∑nG

β=1
wαwβNe( ξ1α, ξ2β

)T ke
cN

e( ξ1α, ξ2β
)
det
(
J
(
ξ1α, ξ2β

))
(15)  

where nG is the number of Gauss quadrature integration points which for 3rd order quadrature is 3 in each direction, wα and wβ are 
weight factors, ξ1α and ξ2β are Gauss quadrature integration points in the natural coordinate, and J(ξ1α, ξ2β) is the Jacobian matrix, 
respectively. 

2.4. Equations of motion of the rotor-bearing system using 3D solid elements 

The equation of motion for a rotor-bearing system modeled with 3D solid element, is written in the rotor-fixed coordinate system as 
[26] 

Mq̈(t) +
{

2ΩCR +Cb,r
}

q̇(t) +
{

Ks − Ω2Kd +Kc +Kσ +Kb,r
}

q(t) = Ω2f
c
+ f (16)  

where M is the mass matrix, CR is the Coriolis matrix, Cb,r is the bearing damping matrix in the rotor-fixed coordinate system, Ks is the 
structural stiffness matrix, Kd is the dynamic stiffness matrix, Kc is the contact stiffness matrix, Kσ is the stress stiffness matrix. The 
effects of stress stiffening (tensile force) or softening (compressive force) are accounted for not only at the interface but also along the 
entire rotor. The stress-stiffening effect on the response of a stacked rotor assembly can become significant as the preload increases. Kb,r 

is the bearing stiffness matrix in the rotor-fixed coordinate system, f c is the centrifugal force vector, f is the contact force vector, Ω is 
the rotor spin speed, and q(t) is the displacement vector. The contact stiffness matrix Kc is obtained from Eq. (12). The detailed 
derivation of Eq. (16) is provided in [27]. 

3. Contact theory 

3.1. GW contact parameters 

Although a machined metal surface may appear to be smooth, surface roughness exists at the microscopic level. The GW contact 
model [6] was developed by Greenwood and Williamson to simulate the roughness of the surfaces that were in contact. There are three 
GW contact parameters that feature the surface roughness: average radius of asperity Rs, area density ηs, and standard deviation of 
height σs. These values can be obtained by measuring surface profiles z(x) and using Eqs. (17)–(23) where m0, m2, and m4 are zeroth, 
second, and fourth spectral moments [28]. 

m0 = mean
(
z(x)2) (17)  

m2 = mean

((
dz(x)

dx

)2
)

(18)  

m4 = mean

((
d2z(x)

dx2

)2)

(19)  

α =
m0m4

m2
2

(20)  

Rs =
3
8

̅̅̅̅̅̅
π

m4

√

(21)  

ηs =
m4/m2

6π
̅̅̅
3

√ (22)  

σ2
s =

(

1 −
0.8968

α

)

m0 (23) 

Composite surface roughness parameters must be utilized to consider surface roughness parameters for a contact [6,29]. The 
spectral moments of the composite surface and the composite plane-stress modulus E’ are obtained as 

m2
n,p = m2

n,s1 + m2
n,s2 (n= 0, 2, 4) (24)  

1
E′ =

1 − ν2
1

E1
+

1 − ν2
2

E2
(25)  

where the subscripts p represents composite, the subscripts 1 and 2 represent the first and second domain at the contact face, and s1 
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and s2 represent surface 1 and surface 2, respectively. The contact stiffness per a unit area kcn and the contact pressure Pc can be 
computed from the composite GW parameters using the explicit relationships shown below [6]. 

Pc =
4
3
ηsE

′R0.5
s σ1.5

s F1.5(h) (26)  

kcn = 2ηsE
′R0.5

s σ0.5
s F0.5(h) (27)  

where h denotes the standardized separation which is defined as d/σs and d denotes the distance between two separated reference 
planes. The parabolic cylinder function is used to define Fn(h). 

Fn(h) =
∫∞

h

(s − h)nϕ∗(s) =
1̅̅
̅̅̅

2π
√

∫∞

h

(s − h)ne−
1
2s2 ds =

n!
̅̅̅̅̅
2π

√ e−
1
2h2 U(n+ 0.5, h) (28)  

where n is either 0.5 or 1.5, ϕ∗(s) denotes the Gaussian distribution function, and U denotes a Whittaker function [30]. The following 
equations can be used to determine the terms F0.5 and F1.5 where K is the Modified Bessel function of the second kind [31,32]. 

U(1, x) = 2π− 1
2

(
1
2

x
)3

2
(

− K1
4
+K3

4

)

U(2, x) = 2 ⋅
2
3
π− 1

2

(
1
2

x
)5

2
(

2K1
4
− 3K3

4
+K5

4

)

(29) 

After the normal stiffness is obtained, the tangential stiffness kct can be obtained by [33] 

Fig. 5. Linear regression relation between (a) σs & Ra, and (b) σs & Rq.  
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kct =
π(1 − υ)
2(2 − υ)kcn (30)  

3.2. Amplitude parameters 

Amplitude parameters are the most important factors in describing surface topography. The most widely utilized amplitude pa
rameters are arithmetical mean deviation Ra and root mean square Rq. The formula for these parameters with surface profiles z(x) are 
[34] 

Ra =
1
l

∫l

0

|z(x)|dx (31)  

Rq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
l

∫l

0

⃒
⃒z(x)2⃒⃒dx

√
√
√
√
√ (32)  

Fig. 6. Converged mesh of rigid hollow shafts and elastic butt joint assembly; (a) 3D solid element model, (b) Beam model, and (c) von Mises stress 
of the butt joint with axial preload of 120 kN. 
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3.3. Relationship between amplitude parameters and GW parameters 

The parametric study performed in Oh et al. [18] established that among the GW contact parameters, Rs and ηs had only a minor 
influence on contact stiffness but σs had a very significant influence. Therefore, only the relationship between σs and Ra, and σs and Rq 
are investigated. Eqs. (17) and (32) shows that Rq equals to m0.5

0 , which provides the linear relationship 

σs = c Rq (33) 

Fig. 5 shows linear regressions between σs and Ra, and σs and Rq from the experimental data in [4,18,19]. The range of measured σs 
is from 0.1 µm to 13.9 µm. A value of σs of 0.1 µm denotes a highly refined surface and represents an extremely smooth finish. Curvic 
coupling have similar surface roughness values of approximately σs (0.2–0.3 µm) [4]. A value of σs around 1 µm denotes a precision 
machined finish produced under controlled conditions. A value of σs around 10 µm represents a rough, low-grade surface roughness 
resulting from coarse feeds and heavy cuts. These cuts might result from milling or disk grinding. The linear regression equations 
shown in Fig. 5 are 

σs = 1.2117 Ra + 0.0317 (34)  

σs = 0.9953 Rq (35) 

Mean-squared error (MSE) and coefficient of determination R2 are computed for determining linear regressions accuracy as 

MSE =
1
n

∑n

i=1
(yi − ŷi)

2 (36)  

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (37)  

where yi represents the actual values, ŷi represents calculated values, and y represents the mean value of y. MSE is defined as the 
average squared difference between the estimated and actual values, and R2 specifies the percentage of data points that fall within the 
regression equation line’s outcomes. Higher R2 indicates a strong correlation between the two variables. The MSE of the linear 
regression with linear Ra is 0.0157 (1.57%) while MSE of the linear regression with Rq is 0.0017 (0.17%), so both MSE are very low. R2 

of a linear regression with Ra is 0.9982 (99.82%) whereas R2 of a linear regression with Rq is 0.9982 (99.98%), which clearly confirms 
the linear relationship between σs and Ra, and σs and Rq for steel-type texture amplitude distribution. 

4. Equivalent beam model methodology 

4.1. Ecoupling: equivalent Young’s modulus 

This section presents an approach for incorporating the 3D solid element results into an equivalent beam element for use in 
conventional rotordynamic codes, employed throughout industry. Prior studies using 3D solid element models of butt joint [18], Hirth 
[19], and Curvic [4] couplings, with a GW contact model, showed that the natural frequencies of the shaft decrease as the applied 
preload decreases. This resulted from a decrease of the local lateral stiffness at coupling’s contact surfaces. These results suggest tuning 
the Young’s modulus of a beam model to match natural frequency results from a more complex 3D solid element model including the 
GW based contact stiffness. A method of tuning the equivalent Young’s modulus is illustrated below. 

Fig. 6(a) shows the 3D solid element soft butt joint model connected by two 3D solid element rigid hollow shafts, while (b) shows 

Table 1 
Properties of the rigid hollow shafts and elastic butt joint assembly.   

OD [mm] ID [mm] L 
[mm] 

ρ 
[kg/m3] 

E 
[GPa] 

ν 

Shaft 50.8 25.4 300 8202 5000 0.3 
Butt joint 50.8 25.4 20.32 7800 205 0.3  

Table 2 
Measured composite GW parameters between the shaft and the butt joint [18].   

Composite GW contact parameters 

Surface Rs [m] ηs [1/m2] σs [m] 

Smooth 2.8022E-06 4.9751E+10 1.5646E-06 
Medium 2.0971E-06 3.5125E+10 3.3703E-06 
Rough 1.5032E-06 5.0394E+10 7.0149E-06  
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the beam butt joint connected by two beam rigid hollow shafts. Fig. 6(c) displays the von Mises stress plot of the butt joint when a 120 
kN axial preload is applied to each end of the shaft. The geometry of the beam butt joint and the 3D solid element butt joint are 
identical. Table 1 lists the material properties of the rigid hollow shafts and butt joint assembly for both 3D solid and beam element 
models in Fig. 6. Making the adjacent hollow shafts rigid isolates the effect of the butt joint flexibility, which is of primary modeling 
concern for the actual rotor model that includes the butt joint. Thus, the goal is to identify an equivalent Youngs modulus solely for the 
beam element that models the butt joint, by matching natural frequencies. The 3D solid element rigid hollow shafts utilize the arti
ficially high Young’s modulus 5000 GPa to impose rigidity. This value of 25x actual balances the need for rigidity with avoiding ill 
conditioned matrices in the solution process. Table 2 lists the values of measured composite GW parameters from [18]. For three 
different surface roughness levels, each surface is measured ten times at various positions, yielding relative standard uncertainties 
ranging from 8 to 12% for the measurement surfaces. 

The Young’s modulus (Ecoupling) of the beam butt joint shown in Fig. 6(b) is varied so that the difference between the first bending 
natural frequency of the beam element rigid shaft and elastic butt joint model and the 3D solid element rigid shaft- elastic butt joint 
model in Fig. 6 is less than 1%. The Young’s modulus of the beam element rigid shaft is also set to 5000 GPa. Fig. 7 shows Ecoupling 
versus preload and surface roughness (from Table 2) of the butt joint, obtained in this manner. The result shows that Ecoupling increases 
with increasing preload for all surface roughness. This is because the local lateral stiffness at the contact faces is high when the preload 
is large, whereas it is relatively low when the preload is small. The result shows that Ecoupling approaches 200 GPa, which is a typical 
Young’s modulus of steel, for the smooth roughness - high preload case. The Ecoupling has a steeper slope at low preload, allowing it to 
ascend quicker to 200 GPa, compared to the other roughnesses. 

4.2. Ecoupling sensitivity test for GW surface roughness parameters 

The sensitivity of Ecoupling to the three GW parameters from Eqs. (21)–(23) is investigated here. Nine sampled composite surface 
roughness are listed in Table 3. Fig. 8 shows Ecoupling versus preload for the GW parameter sets in Table 3. For GW1 to GW3, the Rs 
values increases by 100 times but there is only a marginal increase in Ecoupling as shown in Fig. 8(a). A similar trend occurs when ηs is 
increased by 100 times from GW4 to GW6. In contrast, increasing σs by 100 times from GW7 to GW9 shows a major decrease in 
Ecoupling, demonstrating that Ecoupling is most sensitive to σs. 

Fig. 7. Ecoupling vs. preload for different surface roughness of the butt joint.  

Table 3 
Composite GW parameters for sensitivity test.   

Composite GW contact parameters 

Set Rs [m] ηs [1/m2] σs [m] 

GW1 0.1E-06 1.0E+10 1.0E-06 
GW2 1.0E-06 1.0E+10 1.0E-06 
GW3 10.0E-06 1.0E+10 1.0E-06 
GW4 1.0E-06 0.1E+10 1.0E-06 
GW5 1.0E-06 1.0E+10 1.0E-06 
GW6 1.0E-06 10.0E+10 1.0E-06 
GW7 1.0E-06 1.0E+10 0.1E-06 
GW8 1.0E-06 1.0E+10 1.0E-06 
GW9 1.0E-06 1.0E+10 10.0E-06  
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4.3. Φcoupling: equivalent transverse shear effect 

The bending stiffness is influenced by the interaction between the tooth characteristics and the applied preload. Fig. 9 shows a side 
view of the Hirth coupling used for the case study obtaining the equivalent beam. Table 4 shows the Hirth coupling parameters. A 
comprehensive approach for modeling the Hirth coupling in three dimensions is provided in reference [19]. 

Fig. 10(a) shows the 3D solid element elastic Hirth coupling model connected between two 3D solid element rigid shafts, and (b) 
shows the equivalent beam for the Hirth coupling, connected between two beam element rigid shafts. Fig. 10(c) shows the von Mises 
stress plot of the Hirth coupling with the application of a 90 kN axial preload. The parameters and values for the Hirth coupling are 
provided in [19]. Table 5 lists the material properties and geometries for the assembly. A preload is applied on each end as shown. The 

Fig. 8. Ecoupling vs. preload with various GW parameters, for (a) increasing Rs, (b) increasing ηs, and (c) increasing σs.  

Fig. 9. Hirth coupling viewed from the side [19].  
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Table 4 
Hirth coupling parameters [19].  

Symbols Definitions Values 

rout outer radius 24.5 mm 
rin inner radius 10 mm 
Nt number of teeth 24 
θtooth tooth angle 60◦

Lhirth Hirth coupling thickness 20.55 mm 
Hbottom distance from base to dedendum 7.7 mm 
Htop distance from base to addendum 11.2 mm 
Lchamfer chamfer length 0.2 mm  

Fig. 10. Converged mesh of rigid shaft and elastic Hirth coupling assembly; (a) 3D solid element model, (b) Beam element model, and (c) von Mises 
stress of the Hirth coupling with axial preload of 90 kN. 
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same method illustrated in the previous section is utilized to obtain Ecoupling of the Hirth coupling. 
The second natural frequencies were also experimentally measured along with the first natural frequencies in [19]. Eq. (11) shows 

that the Timoshenko beam element includes a transverse shear effect Φ to account for shear deformation. The second mode shape 
shows a large shear motion near the coupling when the shafts connected to the coupling are treated as rigid. The lower Ecoupling lowers 
the shear modulus G, which helps to lower the second bending natural frequency, improving agreement between the 3D solid and 
beam element models. The agreement may be further improved by defining an equivalent transverse shear effect Φcoupling, adjusted to 

Table 5 
Properties of the rigid shaft and elastic Hirth coupling assembly [19].   

OD [mm] ID [mm] L 
[mm] 

ρ 
[kg/m3] 

E 
[GPa] 

ν 

Shaft 49 20 300 8523 5000 0.3 
Hirth coupling 49 20 20.55 8295 210 0.3  

Table 6 
Measured composite GW parameters between the shaft and Hirth coupling [19].   

Composite GW contact parameters 

Connection Rs [m] ηs [1/m2] σs [m] 

Shaft - Hirth base 10.738E-06 1.882E+10 0.3189E-06 
Hirth tooth - tooth 8.093E-06 1.721E+10 0.7031E-06  

Fig. 11. Ecoupling and Φcoupling vs. preload for the Hirth coupling contact.  

Fig. 12. Side views of the assembled and separated Curvic coupling [4].  
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lessen the difference in the second natural frequencies. The equivalent transverse shear effect Φcoupling for the coupling is obtained 
after, and in the same manner, as Ecoupling. The transverse shear effect Φ of the beam Hirth coupling, shown in Fig. 10(b), is varied so 
that the second bending natural frequency of the beam rigid shafts–beam Hirth coupling with Ecoupling and Φcoupling model, matches 
that of the 3D solid element rigid shafts–3D solid element Hirth coupling model. The parameter Φcoupling improves accuracy of the 
second natural frequency, while having little influence on the first natural frequency. Fig. 10 shows that there are three contact in
terfaces but only two different sets of GW parameters are required for the Hirth coupling because the composite surface roughness of 
first and third contact are the same. The measured GW parameters of the contact surface roughness related to the Hirth coupling are 
listed in Table 6. By conducting ten measurements of the surface roughness on the Hirth coupling and shaft contact face, the relative 
standard uncertainty of the parameter σs is determined to be within the range of 7–13% [19]. Fig. 11 shows Ecoupling and Φcoupling 
versus preload for the Hirth coupling. The result shows that both Ecoupling and Φcoupling increase with the increase of preload. 

Ecoupling and Φcoupling for a Curvic coupling are obtained in the same manner as for the Hirth coupling. Fig. 12 shows a side view of 
the Curvic coupling used for the case study obtaining the equivalent beam. Fig. 13 and Table 7 illustrates the Curvic coupling pa
rameters and corresponding values. A comprehensive approach for modeling the Curvic coupling in three dimensions is provided in 
reference [4]. 

Fig. 14(a) shows a 3D solid Curvic coupling model connected by two 3D solid element rigid shafts. Fig. 14(c) shows the von Mises 
stress plot of the Curvic coupling with the application of a 70 kN axial preload. The parameters and corresponding values for the 3D 
Curvic coupling are provided in [4]. Table 8 lists the measured GW parameters for the three contact faces. The relative standard 
deviation of the parameters σs for ten measurements was calculated and it ranged between 6 and 12%. 

Fig. 13. Curvic coupling profile parameters viewed from the side and radial direction [4].  

Table 7 
Curvic coupling parameters [4].  

Categories Symbols Definitions Values Geometric constraint 

Independent 
parameters 

OD Base outer diameter 50.8 mm  
ID Base inner diameter 25.4 mm  
D Curvic tooth outer diameter 43 mm R = 21.5 mm 
d Curvic tooth inner diameter 36 mm r = 18 mm 
Nt Number of teeth 24 Even number 
Nx Half pitch number 21 N = 2n + 1,

n ∈ [0, Z − 1]

α Pressure angle 30 ◦

ha Height of addendum 10.7 mm  
hd Height of dedendum 9.0 mm  
hb Height of base 7.5 mm  
hc Clearance 0.3 mm  

Dependent 
parameters 

β Angle between rm and S 78.75 ◦ β = 90∘Nx

Nt 
W Tooth width 3.5 mm W =

D − d
2 

rm Mean radius of Curvic Coupling 19.75 mm 
rm = 0.5

( D
2
+

d
2

)

rw Grinding wheel radius 99.29 mm rw = rmtanβ 
S Wheel distance 101.235 mm S =

rm

cosβ 
hw Whole depth 1.7 mm hw = ha − hd 

hw = a+ b 
a Addendum 0.7 mm a =

hw − hc

2 
b Dedendum 1 mm b = a+ hc 

he Chamfer length 1.44 mm he = hd − hp +
xc

tan(α)
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Fig. 15 shows the increase of both Ecoupling and Φcoupling with axial preload for the Curvic coupling. The asymptotic value of Ecoupling 
is approximately 80 GPa which is less than the actual E value for steel, 200 GPa. One may expect the coupling to behave similar to a 
continuous beam for extremely high preload values. This is the case here when one considers the area moments of inertia of the solid 
element and beam element models for the toothed section. The EI product of the high preload beam and solid models are in close 

Fig. 14. Converged mesh of the rigid shaft and elastic Curvic coupling assembly; (a) 3D solid element model, (b) Beam element model, and (c) von 
Mises stress of the Curvic coupling with axial preload of 70 kN. 

Table 8 
Measured composite GW parameters for the shaft and the Curvic coupling [4].   

Composite GW contact parameters 

Connection Rs [m] ηs [1/m2] σs [m] 

Shaft - Curvic bottom 1.171E-06 10.429E+10 3.431E-06 
Curvic tooth - Curvic tooth 6.087E-06 2.770E+10 0.2458E-06  
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Fig. 15. Ecoupling and Φcoupling vs. preload for the Curvic coupling beam model.  

Fig. 16. Test rotor assembly with butt joint (a) converged 3D solid element mesh, (b) equivalent beam element mesh, (c) Timoshenko beam element 
mesh, and (d) beam element in 1D form. 
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Table 9 
Properties of the test rotor assembly with the butt joint [18].   

OD (mm) ID (mm) L 
(mm) 

ρ 
(kg/m3) 

E 
(GPa) 

ν 

Through- bolt 22.23 0 381.00 7837 205 0.3 
Nut 33.34 22.23 19.05 8202 205 0.3 
Washer 45.21 24.00 4.32 7929 205 0.3 
Outer annular shaft 50.8 25.4 152.4 8202 205 0.3 
Center butt joint 50.8 25.4 20.32 8202 205 0.3  

Fig. 17. Test rotor assembly with the butt joint [18].  

Fig. 18. Measured and predicted bending mode natural frequencies of 3D solid element, equivalent beam element, and Timoshenko beam element 
models of the test rotor with butt joint. 

B.J. Kim et al.                                                                                                                                                                                                          



Journal of Sound and Vibration 565 (2023) 117921

19

agreement as preload is increased to the asymptotic limit. A final point is that commercial beam based rotordynamic codes may not 
have an input for specifying Φ but typically will have one for the shear form factor k, which is readily obtained from Φ in Eq. (11). 

5. Verification of various axial contact models 

5.1. Test rig with butt joint 

The primary objective of obtaining Ecoupling and Φcoupling based on detailed 3D solid element modeling is to accurately represent the 
coupling in commercially available beam based rotordynamic simulation software. The converged mesh, beam and 3D solid element 
models with the butt joint [18] are shown in Fig. 16. The corresponding material properties are shown in Table 9. Fig. 16(a) shows the 
3D solid element mesh and Fig. 16(b), (c) and (d) depict the beam model. The thick green dashed line mesh at the center of the rotor in 
Fig. 12(b) represents the butt joint beam element with Ecoupling. Fig. 16(c) shows the Timoshenko beam model and Fig. 16(d) shows its 
1D form. Fig. 17 shows the test rotor assembly with the butt joint. 

There are two distinct sub-assemblies defined: the outer member sub-assembly (OMA) and the inner member sub-assembly (IMA). 
The OMA consists of two washers, two shafts, and a butt joint. They are represented in red dash-dotted lines and thick green dashed 
lines in Fig. 16(b). The corresponding nodes for the OMA in Fig. 16(d) are from nodes 22 to 40, node 3, and node 19. The IMA consists 
of the through-bolt and two nuts represented as the blue solid line mesh. The corresponding node numbers for the IMA in Fig. 16(d) are 
from node 1 to 21. Note that node number 3 and 19 are shared by both sub-assemblies. The two assemblies are connected in parallel 
where the pressure boundaries are applied. The pressure boundary faces for the test rotor are highlighted by pink dotted lines in Fig. 16 
(a) and (b) and are marked as face 1. Torque was applied to the through-bolt and nuts to provide axial preload on the shafts [35]. This 
results in the through-bolt and nuts being in tension, while the washers, shafts, and butt joint are in compression. 

Fig. 18 shows a comparison between the measured and predicted free-free bending mode natural frequencies of the 3D solid 
element model, equivalent beam model, and the Timoshenko beam model for the test rotor with the butt joint. The measured and 
predicted natural frequencies for the 3D solid element model and equivalent beam model with different surface roughness all agree 
very well. The free-free bending mode natural frequency for the uniform Timoshenko beam model without preload is 1779 Hz, which is 
significantly higher than all measured data especially at low preloads and with a rough surface finish at the butt joint. 

Fig. 19. Test rotor assembly with the Hirth coupling (a) converged 3D solid element mesh, (b) equivalent beam element mesh, (c) Timoshenko 
beam element mesh, and (d) beam element in 1D form. 
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Fig. 20. Measured and predicted bending mode natural frequencies of the 3D solid element, equivalent beam element, and Timoshenko beam 
models for the test rotor with a Hirth coupling. 

Fig. 21. Measured and predicted first bending mode natural frequencies of the 3D solid element, equivalent beam element, and Timoshenko beam 
models for the test rotor with a Hirth coupling. 
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In a design stage scenario, the measured data is generally unavailable however the solid element model results may be available. 
Thus, it is practical to compare the beam predictions with the 3D solid element predictions, especially when considering the good 
correlation of the solid element model with measured data in Fig. 18. The maximum difference between the prediction of the 3D solid 
element model and the Timoshenko beam model is about 546 Hz at the preload of 10 kN with rough surface, which is a 44.3% error. 
This error is significantly reduced by using the equivalent beam element Ecoupling for the butt joint model. In this case the beam 
prediction model is only 24 Hz higher than the solid element model prediction at 10 kN preload and with the rough surface. This 
reduces the error of the beam mode prediction from 44.3% to 1.9%. Similarly, the maximum difference between the equivalent beam 
and the 3D solid element model predictions is 61 Hz at a preload of 10 kN with a smooth surface, which is a 3.9% error. The predictions 
of the equivalent beam model are closely aligned with the 3D solid element model with contact effect prediction for all surface 
roughness, and preloads. The equivalent beam model performs exceptionally well for all surface roughness. The pressure resulting 
from the preload can be determined through contact area calculations by utilizing the diameter information provided in Table 9. 
Dividing this pressure by the yield strength of the steel, which is 450 MPa, allows for the normalization of the preload. The corre
sponding normalized preloads for values of 10, 20, 40, 60, 90, and 120 kN are 0.053, 0.106, 0.211, 0.317, 0.476, and 0.634, 
respectively. 

5.2. Test rig with Hirth coupling 

Fig. 19 shows the converged mesh 3D solid and Timoshenko beam element geometries for the prediction models with the Hirth 
coupling [19]. Appendix B includes Fig. B.1 depicting the test rotor assembly with the Hirth coupling, and the properties of the test 
rotor assembly are listed in Table B.1 [19]. The thick green dashed line mesh at the center of the rotor in Fig. 19(b) represents the Hirth 
coupling that has properties of Ecoupling and Φcoupling from Fig. 11. Fig. 19(c) and (d) show the Timoshenko beam model and a 1D 
representation with node numbers, respectively. Fig. 19(a) shows the seven contact interfaces. Pink dotted lines indicate the pressure 
boundary faces for the test rotor among the contact interfaces. The OMA and IMA of the beam model share the pressure boundary 
nodes, which are node 4 and 20 in Fig. 19(d). Fig. 20 shows the measured and predicted free-free first and second bending mode 
natural frequencies of the 3D solid element model, equivalent beam model, and the Timoshenko beam model for the test rotor with the 
Hirth coupling. The natural frequencies of the rotor are predicted with preloads of 10, 20, 30, 50, 70, and 90 kN. Figs. 21 and 22 show 
zoom views of the 1st and 2nd bending mode natural frequencies, respectively. The first mode measured and predicted natural fre
quencies for the 3D solid model and equivalent beam model agree well, and Φcoupling has little effect on the beam model first natural 
frequency. The second natural frequency prediction of the equivalent beam model with Ecoupling and Φcoupling has better accuracy than 
with only Ecoupling. The free-free first and second bending mode natural frequencies for the Timoshenko beam model without preload 
are 1810 Hz and 4550 Hz, respectively. The first natural frequency difference between the 3D solid model with Hirth coupling and the 
Timoshenko beam is 147 Hz at a preload of 10 kN, while the difference between the 3D solid Hirth coupling and equivalent beam is 
only 6 Hz at the same preload. By dividing the pressure by the yield strength of the material, the normalized preloads for values of 10, 
20, 30, 50, 70, and 90 kN are determined to be 0.028, 0.056, 0.084, 0.140, 0.195, and 0.251, respectively. These findings indicate that 
the natural frequency of the system equipped with the Hirth coupling tends to approach the upper limit at lower normalized preload 
levels. 

Fig. 22. Measured and predicted second bending mode natural frequencies of the 3D solid element, equivalent beam element, and Timoshenko 
beam models for the test rotor with a Hirth coupling. 
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5.3. Experiment – theory comparison for curvic coupling 

Fig. 25 shows the geometry of the prediction models for 3D solid elements including the Curvic coupling [4], and for beam elements 
with a converged mesh. Appendix B includes Fig. B.2 depicting the test rotor assembly with the Curvic coupling, and the properties of 
the test rotor assembly are listed in Table B.2 [4]. The thick green dashed line mesh at the center of the rotor in Fig. 23(b) represents the 
beam elements with Ecoupling and Φcoupling from Fig. 15, which represents the 3D solid Curvic coupling. Fig. 23(c) and (d) show the 
Timoshenko beam model mesh and a 1D model representation with node numbers, respectively. The pressure boundary faces for the 
test rotor are indicated by pink dotted lines in Fig. 23(a) and (b). The pressure boundary nodes shared by the OMA and IMA of the beam 
model are nodes 4 and 20 in Fig. 23(d). 

The efficacy of the equivalent Ecoupling and Φcoupling approach was investigated by comparison with the solid element model and 
measured natural frequencies. Fig. 24 shows the measured and predicted free-free first and second bending mode natural frequencies 
of the 3D solid element model, equivalent beam model, and the uniform Timoshenko beam model for the test rotor, with a Curvic 
coupling. Figs. 25 and 26 show zoomed-in views of the first and second bending mode natural frequencies, respectively. 

The measured and predicted natural frequencies for the 3D solid element and equivalent beam models agree well for both first and 
second bending mode natural frequencies. Free-free first and second bending mode natural frequencies for the Timoshenko beam 
model without preload are 1774 Hz and 4454 Hz, respectively, which are far from the values predicted by the high fidelity solid 
element model. Use of the equivalent beam approach significantly narrows the gap between the solid element and beam model 
predictions. The maximum difference between the 3D solid element model with Curvic coupling, and the Timoshenko beam model is 
629 Hz at a preload of 3 kN, yielding a 55% difference. In comparison, the maximum difference between the 3D solid element model 
with Curvic coupling and the equivalent beam model is only 18 Hz at the same preload. The relative error decreases from 55% to 1.5% 
for this example. The predicted natural frequencies of the equivalent beam model are always located between those of the Timoshenko 
beam and the 3D solid element models. The normalized preloads, that are obtained by dividing the pressure by the yield strength of the 
material for preloads of 3, 5, 10, 20, 30, 40, 50, and 70 kN, are 0.004, 0.007, 0.014, 0.029, 0.043, 0.057, 0.071, and 0.100. Fig. 27 
shows the free-free first and second bending mode shapes prediction for the equivalent beam model for the test rotor with the Curvic 
coupling at a preload of 70 kN. The red dotted line represents the OMA modal deflection, and the blue solid line indicates the IMA 
modal deflection. 

Fig. 23. Test rotor assembly with the Curvic coupling (a) converged 3D solid element mesh, (b) equivalent beam element mesh, (c) Timoshenko 
beam element mesh, and (d) beam element in 1D form. 
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6. Example: overhung rotor-bearing system model 

6.1. de Jongh rotor with equivalent beam model 

The preceding sections discussed test and theoretical results for a novel modeling approach utilizing an equivalent beam model for 

Fig. 24. Measured and predicted bending mode natural frequencies of the 3D solid element, equivalent beam, and uniform Timoshenko beam 
models for the test rotor with a Curvic coupling. 

Fig. 25. Measured and predicted first bending mode natural frequencies of the 3D solid element, equivalent beam, and uniform Timoshenko beam 
models for the test rotor with a Curvic coupling. 
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Fig. 26. Measured and predicted second bending mode natural frequencies of the 3D solid element, equivalent beam, and uniform Timoshenko 
beam models for the test rotor with a Curvic coupling. 

Fig. 27. Predicted free-free first and second bending mode shapes of the equivalent beam model for the test rotor with a Curvic coupling at a 
preload of 70 kN. 
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a butt joint, and Hirth, or Curvic couplings. The approach was demonstrated with a short non-rotating, preloaded shaft. In this section, 
the effectiveness of the equivalent beam model approach is demonstrated for an industrial class rotor model. The overhung-type de 
Jongh rotor was presented and analyzed in detail in [36,37]. Fig. 28 shows the cross section, free-free first bending mode, and internal 
strain energy due to the modal deflection along the axial direction of the overhung de Jongh rotor beam model. The Young’s modulus 
of the beams is 200 GPa and the density is 7850 kg/m3. The simulated free-free first bending mode natural frequency of the beam 
model is 200 Hz. The internal elemental strain energy Umd is determined from the modal deformation qmodal and the beam element 
stiffness matrix Kbe. 

Umd =
1
2
qmodal

T Kbe qmodal (38) 

The maximum bending occurs where the strain energy is maximum (0.82 m). The rotating assembly of de Jongh rotor is modified to 
investigate the effectiveness of the equivalent beam model by comparing it with the 3D solid element model with contact effect. Fig. 29 
shows the three 3D solid element models of the de Jongh rotor with a butt joint, Hirth coupling, and Curvic coupling located near the 
maximum bending point. The models also consist of other components such as a through-bolt, the shaft, and an overhung impeller. The 
inner and outer diameters of the butt joint, Hirth coupling, and Curvic couplings are 102 mm and 42 mm, respectively. The other 
parameters for the Hirth coupling and Curvic coupling are listed in Table 10 and Table 11, respectively. 

Fig. 28. Overhung-type de Jong rotor; (a) beam model cross section, (b) free-free first bending mode and (c) corresponding strain energy along the 
axial direction. 
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Fig. 30 shows the contact nodes at the interfaces. Clamping preload forces are applied on each end. The centrifugal force term f c in 
Eq. (16) is incorporated due to rotor rotation. Guyan reduction is used to efficiently obtain the eigenvalues [38]. The GW parameters 
utilized in the case study are listed in Table 12. Use of the diameter of a wheel attached to the shaft as the shaft diameter in a beam 
model generally causes overly high bending stiffnesses and natural frequencies. To mitigate this error, wheels are modeled to only 

Fig. 29. Three distinct 3D solid models of a de Jongh rotor with (a) butt joint, (b) Hirth coupling, and (c) Curvic coupling.  

Table 10 
Hirth coupling parameters located at x = 0.82 m of de Jongh model.  

Symbols Definitions Values 

rout outer radius 51 mm 
rin inner radius 21 mm 
Nt number of teeth 24 
θtooth tooth angle 60◦

Lhirth Hirth coupling thickness 32.95 mm 
Hbottom distance from base to dedendum 11.5 mm 
Htop distance from base to addendum 19 mm 
Lchamfer chamfer length 0.8 mm  
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contribute lumped inertias to the model, and not stiffness. The predicted first natural frequency of the beam - lumped mass model 
shown in Fig. 31 is 198 Hz. Through-bolts are represented by blue beams, while shafts are represented by red beams. The green beams 
show the equivalent beams with Ecoupling. The parameter Ecoupling is included to enhance the beam model of a butt, Hirth or Curvic 
coupling. 

6.2. Natural frequencies of de Jongh rotor with the equivalent beam model 

The calculated Ecoupling versus preload in relation to surface roughness is shown in Fig. 32(a). These values were determined as in 
the previous sections by adjusting the Ecoupling value in a beam model to match the solid element model results for a short rigid shaft 
model like shown in Fig. 6. Sigma1, Sigma2, and Sigma3 indicate the surface roughness in Table 12 with σs values varied as 1.0E-06, 
2.0E-06, and 3.0E-06, respectively. Compared to Sigma2 and Sigma3, the surface roughness of Sigma1 is relatively smooth. The 
calculated Ecoupling vs. preload in relation to the coupling type is shown in Fig. 32(b). The same surface roughness (Sigma1) is used. It is 
found that the butt joint has a bigger Ecoupling than the Hirth or Curvic coupling. 

The calculated Ecoupling from Fig. 32 is used in the green beam elements in Fig. 31 to determine the de Jongh rotor’s first natural 
frequencies in relation to the surface roughness. The results are presented in Fig. 33. The natural frequencies of the rotor are predicted 
with preloads of 5, 10, 15, 30, 50, and 100 kN. The result demonstrates that the predicted natural frequencies for the 3D solid element 
model and equivalent beam model for de Jongh rotor agree well across a range of surface roughness. 

The de Jongh rotor’s first bending mode natural frequencies are shown in Fig. 34 for the 3 coupling types studied. Each assumes the 
same surface roughness (Sigma1). This demonstrates that the predicted natural frequencies for the 3D solid element and equivalent 
beam models agree well with the various coupling types. 

6.3. Critical speeds of de Jongh rotor with equivalent beam model 

Fig. 35 shows the stiffness and damping coefficients of the tilting pad journal bearings [39]. A rotor-fixed coordinate system is used 
to derive the equations of motion for the 3D solid element model of the rotor-bearing system. The bearing matrices in the inertial 
coordinate system are transformed into the rotor-fixed coordinate systems Kb,r and Cb,r as explained in [26]. 

Fig. 36 shows the predicted first critical speeds of the de Jongh rotor in relation to the surface roughness of the butt joint. The 
critical speeds of the Timoshenko beam model and continuous 3D solid single model are 6979 rpm and 6750 rpm, respectively. The 
equivalent beam model results show a significant improvement, relative to the Timoshenko beam, when benchmarking against the 
high fidelity solid element model with the rough surface at lower preload. For example, the relative error between the Timoshenko 
beam and the 3D solid butt joint model at a preload of 5 kN and Sigma3 surface roughness is 45%. The relative error between the 
equivalent beam model and the 3D solid butt joint model at the same preload and surface roughness is only 7%. The 3D solid model 
with contact effect approaches the continuous solid single model critical speed as the preload increases. In a similar way, the critical 
speed of the equivalent beam model approaches that of the Timoshenko beam model when the preload increases. 

Fig. 37 shows the predicted first critical speeds of the de Jongh rotor in relation to the coupling type with the surface roughness 

Table 11 
Curvic coupling parameters located at x = 0.82 m of de Jongh model.  

Categories Symbols Definitions Values Geometric constraint 

Independent parameters OD Base outer diameter 102 mm  
ID Base inner diameter 42 mm  
D Curvic teeth outer diameter 93 mm  
d Curvic teeth inner diameter 82 mm  
Nt Number of teeth 24 Even number 
Nx Half pitch number 21 N = 2n + 1,

n ∈ [0, Z − 1]
α Pressure angle 30 ◦

ha Height of addendum 18 mm  
hd Height of dedendum 14 mm  
hb Height of base 10 mm  
hc Clearance 1 mm  

Dependent parameters β – 78.75 ◦ β = 90∘Nx

Nt 
W Tooth width 5.5 mm W =

D − d
2 

rm Mean radius of Curvic Coupling 43.75 mm 
rm = 0.5

( D
2
+

d
2

)

rw Grinding wheel radius 219.95 mm rw = rmtanβ 
S Wheel distance 224.26 mm S =

rm

cosβ 
hw Whole depth 4 mm hw = ha − hdhw = a+ b 
a Addendum 1.5 mm a =

hw − hc

2 
b Dedendum 2.5 mm b = a+ hc  
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Sigma1. This indicates the predicted critical speeds for the 3D solid element and equivalent beam models show good agreement for the 
three coupling types. The relative difference between the Timoshenko beam and the 3D solid element Hirth coupling models at a 
preload of 5 kN with Sigma1 surface roughness is 41%. In comparison, the relative difference between the equivalent beam model and 
the 3D solid element Hirth coupling model is only 3%. 

7. Conclusion 

A novel equivalent beam modeling approach with lower computational requirements and improved accuracy was presented by 
combining the results of high fidelity 3D solid element modeling into a beam model. A review of Timoshenko beam theory was 
provided to explain the transverse shear effect Φcoupling, which is varied to match response the beam and solid element responses. The 
GW and amplitude parameters were reviewed, and linear relationships between them were inferred using linear regression. The co
efficient of determination R2 for the linear regression was found to be 99.8%. 

The equivalent beam model was obtained by including the equivalent Young’s modulus Ecoupling and equivalent transverse shear 

Fig. 30. The contact interfaces of the de Jongh rotor models with a (a) butt joint, (b) Hirth coupling, and (c) Curvic coupling.  

Table 12 
GW surface roughness parameters for the de Jongh rotor case study.   

Rs [m] ηs [1/m2] σs [m] 

Sigma1 1.0E-06 1.0E+10 1.0E-06 
Sigma2 1.0E-06 1.0E+10 2.0E-06 
Sigma3 1.0E-06 1.0E+10 3.0E-06  
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Fig. 31. Lumped inertia - beam model of the de Jongh rotor.  

Fig. 32. Ecoupling vs. preload in de Jongh rotor for (a) different surface roughness of the butt joint and (b) different types of couplings with the same 
surface roughness. 
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effect Φcoupling to reduce differences in the first and second mode frequencies, as predicted with beam and high fidelity solid element 
with asperity effect models. This is performed by simulation with rigid shaft members sandwiching the flexible coupling-joint. This 
isolates the flexible coupling of interest yielding its equivalent model to be used in any subsequent rotor model and any conventional 
rotordynamic simulation. The Ecoupling and Φcoupling values adjusts a beam element model to account for the contact asperity effect. The 
accuracy of this approach was validated for various axial contact models with butt joints, and Hirth, and Curvic couplings. Validation 
was confirmed by comparing the beam and solid element model natural frequencies with each other and with test data. Use of the 
equivalent beam element approach reduced the beam model error for the butt joint case from 44.3% to 1.9% by incorporating the 
equivalent beam properties for the coupling beam elements. The results for the Curvic coupling case showed similar levels of pre
diction accuracy improvement. 

Fig. 33. Predicted free-free first bending mode natural frequencies of 3D solid, equivalent beam, and Timoshenko beam element with lumped mass 
for de Jongh rotor with different surface roughness on butt joint. 

Fig. 34. Predicted free-free first bending mode natural frequencies of the 3D solid element, equivalent beam, and Timoshenko beam with lumped 
mass models for the de Jongh rotor with butt, Hirth, and Curvic couplings surface roughness Sigma 1. 
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The proposed modeling approach was demonstrated on an industrial rotor example to illustrate the methodology and results. A 
complete 3D solid element model of the rotor including asperity effects at the coupling contact surfaces, was treated as a benchmark for 
comparing the equivalent beam model. The results showed improved prediction accuracy of the equivalent beam approach relative to 
a standard beam element model approach for predicting natural frequencies and critical speeds. This was confirmed for the three 
coupling types and 3 levels of asperity roughness. 
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Fig. 35. (a) Stiffness and (b) Damping coefficients for the de Jongh rotor tilting pad bearings.  

Fig. 36. Predicted first critical speeds of 3D solid element, equivalent beam, Timoshenko beam with lumped mass, and continuous 3D solid single 
model for the de Jongh rotor with different surface roughness on the butt joint. 
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Fig. 37. Predicted first critical speeds of 3D solid element, equivalent beam, and Timoshenko beam element with lumped mass for de Jongh rotor 
with butt joint, Hirth, and Curvic coupling and same surface roughness. 

Table A.1 
The Local Coordinate, 3D Timoshenko Beam Stiffness Matrix* K̃ e.

Entries Term 

(1,1), (7,7), (− 7,− 1) EA
L 

(4,4), (10,10), (− 10,− 4) GJ
L 

(2,2) (8,8), (− 8,− 2) 12βa
12

L3 

(6,2), (− 8,− 6), (12,2), (− 12,− 8) 6βa
12

L2 

(6,6), (12,12) βb
12
L 

(12,6) βc
12
L 

(3,3), (9,9), (− 9,− 3) 12βa
13

L3 

(− 5,− 3), (9,5), (− 11,− 3), (11,9) 6βa
13

L2 

(5,5), (11,11) βb
13
L 

(11,5) βc
13
L 

* The matrix is symmetric K̃
T
e = K̃ e 

All undefined terms in the 12 × 12 matrix are zero Negative entries (in parentheses) in the left column indicate to use the negative of the term shown in the right 
column.  

Table B.1 
Properties of the test rotor assembly with the Hirth coupling [19].   

OD (mm) ID (mm) L (mm) Mass (g) Р (kg/m3) E (GPa) ν 

Through-bolt 19 0 381 780 7936 210 0.3 
Nut 33 19 16 70 7682 210 0.3 
Washer 38.1 20.92 3.9 24 8066 210 0.3 
Outer shaft 50.8 25.4 152.4 1805 8523 210 0.3 
Hirth coupling 49 20 20.55 88 8295 210 0.3  
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Table B.2 
Properties of the Curvic test rotor assembly with the Curvic coupling [4].   

OD (mm) ID (mm) L (mm) Mass (g) Р (kg/m3) E(GPa) ν 

Through-bolt 22 0 381 1030 7112 200 0.3 
Nut 34 22 20 103 7238 200 0.3 
Washer 44 23.5 4 32 7361 200 0.3 
Outer shaft 50.8 25.4 153 1813 7795 200 0.3 
Curvic coupling 50.8 25.4 20 180 7800 200 0.3  

Fig. B.1. Test rotor assembly with Hirth coupling [19].  

Fig. B.2. Test rotor assembly with Curvic coupling [4].  
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Appendix A. Timoshenko beam element stiffness matrix [23] 

βa
12 =

EIx̃3

1 + Φ12
, βa

13 =
EIx̃2

1 + Φ13  

βb
12 = (4+Φ12)βa

12, βb
13 = (4+Φ13)βa

13  

βc
12 = (2 − Φ12)βa

12, βc
13 = (2 − Φ13)βa

13  

Φ12 =
12EIx̃3

k2AGL2 =
24Ix̃3

(1 + ν)
k2AL2 , Φ13 =

12EIx̃2

k3AGL2 =
24Ix̃2

(1 + ν)
k3AL2 

The element stiffness matrix of Timoshenko beam [12 × 12] is expressed in tabular form in Table A.1. 

Appendix B. Properties of the test rotor assembly with the Hirth, and Curvic coupling 

The geometry and material properties of the test rotor assembly in Figs. 19 and 23 are shown in the tables below. 
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