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An Enhanced Axisymmetric Solid
Element for Rotor Dynamic Model
Improvement
The authors present an improved formulation for the axisymmetric solid harmonic finite
element (FE) modeling of a flexible, spinning rotor. A thorough comparison of beam-type
FE and axisymmetric solid FE rotor models is presented, indicating the errors that result
from beam FE usage for various nondimensional rotor topologies. The axisymmetric
rotor is meshed in only two dimensions: axial and radial, with both displacement fields
being represented with Fourier series expansions. Centrifugal stress-stiffening and spin-
softening effects are included in all elements and most importantly in modeling flexible
disks. Beam FE and axisymmetric FE natural frequencies, mode shapes, and critical
speeds are compared to identify shaft geometries where the beam model yields a significant
error. Finally, limitations of beam FE models and guidance for utilizing axisymmetric solid
FE models in rotor dynamic simulations are provided. [DOI: 10.1115/1.4043411]

Introduction
Accurate prediction of resonant speeds and instability in rotating

machinery has long been an important concern for designers of tur-
bomachinery. Historically, multistation rotors were originally
modeled with transfer matrix methods [1,2]. This approach has
been for the most part replaced with the use of the finite element
method due to the increased speed of computers and the development
of highly efficient algorithms for solving finite element (FE) equa-
tions. FE modeling approaches for rotor dynamic response have
used both Euler–Bernoulli and Timoshenko beam elements.
Nelson and McVaugh [3] developed a general cylindrical rotating
shaft model using beam elements and including gyroscopic effects,
rotary inertia, and axial loads. This was subsequently extended by
Nelson [4] to include shear deformation and torque effects. Thomas
et al. [5] considered conical shaft sections and utilized two additional
coordinates at the element ends to improve the modeling of shear
deformation. On the basis of their work, Rouch and Kao [6] devel-
oped linearly tapered beam elements by applying numerical integra-
tion to derive element matrices. In order to use closed-form
expressions rather than numerical integration, Greenhill et al. [7]
employed the kinematic representation of the beam FE model in
Ref. [5] and derived closed-form polynomial expressions for ele-
ment matrices. A shear deflection factor is employed in their work
to assess the effect of cross-sectional shape on shear deformation.
The basic beam assumption that plane sections remain plane after

deformation is made for the beam element formulation in this work.
The deformations that violate this assumption are considered as
non-beam deformations. In most cases, shafts have small bending
displacements compared with the length, and the plane sections
after deformation may be approximated to be plane. Hence, it has
been generally believed that the aforementioned beam FE models
are able to yield acceptable results. However, a rising number of
shafts with complex shapes are designed for modern turbomachin-
ery, and as such, the beam assumption may be violated at sections
with large diameter changes, which has been verified by Stephenson
et al. [8]. Besides, a shaft that is composed of hollow conical seg-
ments may not be precisely modeled with beam elements due to dis-
tortions occurring at the hollow conical sections. Vest and Darlow

[9] came up with correction factors to include the effect of distor-
tions on the beam stiffness. However, this approach is limited to
certain cases and is unable to precisely predict the full range of
natural frequencies.
An alternative approach, which is different than applying various

correction factors to beam FE formulations, has been developed by
Stephenson and Rouch [10]. They utilized two-and-one-half-
dimensional (2.5D) solid harmonic elements to model axisymmetric
shafts and extended the formulations to include the gyroscopic
effects based on the work of Cook et al. [11] and Geradin and
Kill [12]. Genta and Tonoli developed one-and-one-half-dimen-
sional (1.5D) axisymmetric element models for flexible thin disks
and blades [13,14], which account for gyroscopics, centrifugal,
and thermoelastic loadings. Their disk 1.5D axisymmetric FE
model is reduced to its midplane and has two displacement coordi-
nates, radial and polar angle displacements. Greenhill and Lease
[15] investigated the influences of disk flexibility and locations
on the rotor system by using axisymmetric solid harmonic elements,
but they did not consider the centrifugal stress-stiffening and spin-
softening effects. Genta presented an improved 2.5D axisymmetric
element model for an axisymmetric rotor [16]. Although centrifugal
and thermal loading are considered in their rotor FE model, detailed
FE matrices and formulations are not provided.
Axisymmetric element rotor models may be more efficient, but

their limitations are recognized when a nonaxisymmetric rotor
model is required. Genta presented a modal approach [17] for 1D
or 1.5D nonaxisymmetric beam-type rotor modeling, which can
be extended to three-dimensional (3D) modeling. In addition,
Genta proposed a general-purpose 3D FE modeling approach [16]
for non-axisymmetric rotors assuming small deflections, and that
a single spin axis exists for each point of the rotating structure.
Datta [18] presented an approach that solves the 3D governing
equations and includes aeromechanics stress and strain solutions
for trim and transient conditions. In regard to a rotor system with
stationary parts like housings, Tseng et al. [19] used solid elements
to discretize the axisymmetric rotor and the housing having arbi-
trary geometry in the rotor- and ground-based coordinate systems,
respectively. Kiesel and Marburg [20] used 3D FE models in
ABAQUS to simulate a complex nonlinear rotor system and show
that 3D rotor modeling and analysis can be done with a commercial
general-purpose FE code. With regard to support boundary condi-
tions, Stephenson and Rouch [10] mentioned that it is reasonable
to apply bearing stiffness and damping to the outer surface node
of a shaft, but they neither specified how to include these coeffi-
cients in the shaft matrices nor validated this point of view.
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Hu and Palazzolo [21] used a rigid and massless beam web with a
fictitious node, which is centered at the web and connected to the
surrounding nodes, to attach the bearing stiffness and damping to
the shaft model.
As disks in the modern design of some high-speed turbomachines

are becoming thinner and more flexible, additional attention may be
required for both centrifugal stress-stiffening and spin-softening
effects. Cook et al. [11] derived equations in the Cartesian coordi-
nate system to interpret initial stress phenomena. However, their
method cannot be directly applied in the axisymmetric FE rotor
model on account of rotor rotation and the different definition of
the Cartesian and cylindrical coordinate systems. The centrifugal
stress-stiffening and spin-softening effects have not been ade-
quately addressed in the rotor dynamics literature. Combescure
and Lazarus [22] provided an axisymmetric FE model in the rotat-
ing frame to study the centrifugal stress-stiffening effects. Although
they presented a general equation of motion including the centrifu-
gal stress-stiffening and spin-softening effects, they did not provide
detailed FE matrices and a procedure to implement their formula-
tion. In addition, their axisymmetric FE model is in the rotating
frame, which has limited applications.
This paper presents an improved axisymmetric solid FE formula-

tion of the centrifugal stress-stiffening and spin-softening effects,
which is applicable in rotor dynamic modeling and analysis. In
addition, the paper investigates the individual influences of either
thin-walled shafts or flexible disks and the combined influences
of both shafts and disks on the rotor system. A discussion and guid-
ance are provided on a proper attachment of the bearing stiffness
and damping to a thin-walled shaft mode. Various combinations
of thin-walled shafts and flexible disks are modeled, and the influ-
ences of the flexibility of the shaft and disk on the accuracy of the
resonance prediction are investigated. The conclusions drawn from
the simulation results and analyses may provide designers and engi-
neers with guidelines on when and how to use an axisymmetric FE
model instead of a beam FE model for rotor dynamic analysis.

Axisymmetric Element Modeling of Rotor
Extreme performance and efficiency requirements have caused

modern rotor designs to become lighter-weight and operate at in-
creasingly higher speeds. This may require shafts to have com-
plex thin-wall and thin-disk designs and to operate through more
resonant speeds. These evolving requirementsmay not be adequately
met by beam FE models and instead require more general solid FE
models.
The axisymmetric element model is a good replacement of the

beam element model for rotor dynamic modeling. In general, the
axisymmetric element is one type of solid elements that can fill a
3D space. The only limitation is that the 3D space must be axisym-
metric. Shaft warping and flexural disk modes, which cannot be
modeled with beam elements due to a violation of the beam assump-
tion, can be modeled using axisymmetric elements. This yields
higher accuracy than not including effects of shaft warping and flex-
ural disk modes for rotor dynamic response prediction. Including
those effects removes kinematic assumptions imposed on the defor-
mation field, which will improve the modeling fidelity. The present
paper provides theoretical development and numerical examples for
an extended axisymmetric solid harmonic element especially useful
for high-fidelity modeling of flexible rotors with shafts, disks, and
general bearings.

Theory. A 3D axisymmetric structure can be formed by rotating
the longitudinal semisection plane about the axis of symmetry. Fur-
thermore, the rotor displacements of the longitudinal semisection
plane can be expanded circumferentially using the Fourier series
in the angle taken about the axis of symmetry. That being said, a
two-dimensional (2D) plane mesh filled with axisymmetric ele-
ments can represent a 3D rotor. More details are given in Refs.
[11,23].

In the present work, the longitudinal semi-section region of a
rotor is filled with linear triangle elements in order to cover irregu-
larly shaped areas. Just to clarify, the methodology of the axisym-
metric FE formulation presented here is applicable not only to the
triangle element type but also to other axisymmetric element
types. As shown in Fig. 1, the shaded area with nodes 1, 2, and 3
represents the three-node triangle element. The displacements of
each element are attained through the superposition of both sym-
metric and antisymmetric components at all harmonics, which
may be expressed as

{Ue
R} =

ur
uz
uθ

⎡
⎣

⎤
⎦ =

∑∞
m=0

(UmrScos(mθ) + UmrAsin(mθ))

∑∞
m=0

(UmzScos(mθ) + UmzAsin(mθ))

∑∞
m=0

(UmθSsin(mθ) − UmθAcos(mθ))

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where ur, uz, and uθ represent the radial, axial, and circumferential
displacements, respectively. Umij with i= r, z, θ representing the
radial, axial, or circumferential displacement component and j=
S, A representing the symmetric or antisymmetric displacement
component is the node degree-of-freedom (DOF) of an element
for the mth harmonics. Then element displacements {Ue

R} can be
further approximated by

{Ue
R} = [N]{qe} (2)

where the node DOF vector of the element {qe} and the correspond-
ing shape function [N] can be found in Refs. [10,15].
The harmonics of interest in this work are m = 0, 1, 2. The

zeroth-order harmonics contribute to a radial expansion u0, an
axial displacement v0, and a torsional rotation w0. Both first- and
second-order harmonics describe the displacements in the YZ
plane and the rotations about the X axis of the finite element.
Below are the two reasons to setm = 0, 1, 2. First, extensive numer-
ical tests have shown that including higher harmonics, above 2, sig-
nificantly increases computation time, but yields little in terms of
increased accuracy of rotor dynamic analysis [8,11,24]. Second,
although the first-order harmonics are the only harmonics of interest
for a shaft in purely lateral bending scenarios [8,15], this may be
insufficient in the case of thin-walled shafts as thin-walled struc-
tures are prone to warping. A flexible disk may have local flexural
modes below the critical speeds, which requires an axisymmetric
FE model with higher harmonics. Therefore, the second-order
harmonics representing the local modes that are uncoupled from
the lateral modes of the shaft are employed. In addition, the
zeroth-order harmonics are included in order to account for the cen-
trifugal stress-stiffening effects.

Fig. 1 Solid of revolution generated from a linear axisymmetric
triangle element
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The axisymmetric FE rotor model can be obtained by assembling
the equations of motion of all elements. The equation of motion for
an individual axisymmetric element may be expressed as

[Me
R]{Ü

e
R} + [Ce

R]{U̇
e
R} + [Ke

R]{U
e
R} = {feR} (3)

where [Me
R], [C

e
R], and [K

e
R] represent the total mass, damping, and

stiffness matrices of the rotor element, respectively. {feR} is the
external force vector. {Ue

R} is obtained by assembling the displace-
ments at all harmonics.
In regard to Eq. (3), the total damping matrix [Ce

R] contains gyro-
scopic matrix and viscous structural damping matrix (negligible
effect for most rotors). The total stiffness matrix [Ke

R] contains
the elastic stiffness, centrifugal stress-stiffening, and spin-softening
matrices. {feR} contains unbalanced forces and bearing forces. The
damping and stiffness matrices derived from bearing forces will be
integrated into [Ce

R] and [K
e
R], respectively. The formulations of the

mass, gyroscopic, and elastic stiffness matrices have been provided
in Refs. [8,15]. However, other important contributions to the rotat-
ing system element matrices were not included in those references,
such as bearing forces, centrifugal stress-stiffening, and spin-
softening. These matrices will be derived and presented here.

Bearing Attachment. One of the key factors that affect the pre-
diction of critical speeds is the approach of attaching linear force
coefficients of transient bearing forces to the shaft model. Bearing
coefficients or forces are connected at a node corresponding to
the bearing centerline in a shaft beam FE model, regardless of
whether the shaft is solid or hollow. In contrast, there are many
nodes at the bearing centerline position in an axisymmetric FE
model, but none on the shaft axis if the shaft is hollow. One
approach is to connect the bearing coefficients or force to a single
surface node of the journal. However, this may be inadequate for
a thin-walled shaft that may distort locally or a bearing with a
large longitudinal length. Therefore, an improved approach is pre-
sented in Fig. 2.
The damping and stiffness dynamic force coefficients of fluid

film bearings and seals are generally measured or obtained by
numerically solving Reynold’s equation for pressure and integrat-
ing to obtain force. The Y and Z reaction forces exerted by the
bearing on the journal are represented by the general linearized
forces

Fy = −Kyywy − Kyzwz − Cyyẇy − Cyzẇz

Fz = −Kzywy − Kzzwz − Czyẇy − Czzẇz
(4)

where wy,wz, ẇy, ẇz represent the Y and Z transverse displacements,
and Y and Z velocities at the bearing centerline and at the center of

the shaft, respectively. The challenge is how to “distribute” the
dynamic coefficients, Kyy, Kyz, Kzy, Kzz (also called linear stiffness
coefficients) and Cyy, Cyz, Czy, Czz (also called linear damping coef-
ficients) over the axisymmetric FE journal surface nodes in a manner
that yields the same forces as defined in Eq. (4). The following
procedure and analysis are employed to fit the dynamic coefficients
of a bearing in the rotor axisymmetric FE model.
As can be seen from Fig. 3, the bearing forces Fy and Fz, which

act on node P, translate from the cylindrical coordinates to the Car-
tesian coordinates as

wP
y = uPr cos(θ) − uPθ sin(θ)

wP
z = uPr sin(θ) + uPθ cos(θ)

(5)

where the superscript represents node P. uPr , u
P
θ are scalar displace-

ments of node P corresponding to the unit vectors er, eθ in the cylin-
drical coordinates, respectively. uPr and uPθ can be decomposed
into different harmonics by using Fourier series, which is similar to
Eq. (1).
Before applying stiffness and damping coefficients of a linear

bearing model to an axisymmetric FE rotor, three prerequisites
are clarified as follows. First of all, bearing forces act on the outer
circumferential surface of a journal. Second, most rotating machines
operate far below the critical speed for the local journal deformation
modes. This factor leads to a practically appropriate assumption that
the node circumferential circle at P may be assumed a rigid node
circle moving with a constant displacement for all the nodes on
the circle (also called rigid node circle). Finally, the expansion or
shrink of the journal is generally negligible in comparison with
lateral displacements caused by shaft bending. However, there are
a few thermal expansion cases in which the expanding journal
may have an impact on the rotor stability [25,26]. Accordingly,
an asymmetric journal model and probably transient analysis are
required to investigate those minority cases. Based on the above
three prerequisites, the first-order harmonics, which contribute to
the lateral displacement, are used to approximate the total displace-
ment of node P in the cylindrical coordinates uPr and uPθ as

uPr = UP
1rScos(θ) + UP

1rAsin(θ)

uPθ = UP
1θSsin(θ) − UP

1θAcos(θ)
(6)

Substituting Eq. (6) into Eq. (5) yields

wP
y = UP

1rScos
2(θ) − UP

1θSsin
2(θ) + (UP

1rA + UP
1θA)sin(θ)cos(θ)

wP
z = UP

1rAsin
2(θ) − UP

1θAcos
2(θ) + (UP

1rS + UP
1θS)sin(θ)cos(θ)

(7)

Per the rigid node circle assumption, the lateral displacements wy

and wz are constant for all nodes (i.e., all θ) on the rigid circle. This
implies that wy and wz shown in Eq. (7) are constant regardless of θ.

Fig. 2 Meshmodel of a hollow shaft supported by two bearings:
triangles represent the surface nodes to which the bearing
forces are distributed and circles denote the nodes of the stiff-
ened elements Fig. 3 Bearing forces on the node of an axisymmetric element
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As a result, the relationship between displacement components can
be obtained as

UP
1θS = −UP

1rS

UP
1θA = −UP

1rA

(8)

The bearing force acting on node P is expressed as

dFP
y =

KyywP
y + KyzwP

z

2π
dθ

dFP
z =

KzywP
y + KzzwP

z

2π
dθ

(9)

As shown in Fig. 3, the bearing forces Fy and Fz translate from
Cartesian coordinates to the cylindrical coordinates. Then, applying
the forces circumferentially to the rigid circle yields the resultant
generalized force QP

j as

QP
j =

∫2π
0
dFP

r
⇀er · ∂u

P
r

∂qj
⇀er +

∫2π
0
dFP

θ
⇀eθ · ∂u

P
θ

∂qj
⇀eθ (10)

where ⇀er , ⇀eθ (equivalent to bold er, eθ shown in Fig. 3) represent
unit vectors in the radial and tangential directions, respectively.
The terms dFP

r and dFP
θ represent the differential bearing forces

in the radial and circumferential directions, respectively, where
both dFP

r and dFP
θ are scalars. The generalized bearing force QP

j ,
which corresponds to the jth DOF qj, contains bearing stiffness
coefficients and displacement DOF terms. Substituting Eqs. (1),
(7), (8), and (9) in Eq. (10) yields QP

j , the formulation of which is
detailed in the Appendix. The bearing stiffness coefficients are inte-
grated into [Ke

R] by adding QP
j into {feR} of Eq. (3) and rearranging

the DOF-related terms. The damping coefficients of the bearing can
be obtained by simply replacing the stiffness coefficients K with C
as the derivation for the damping coefficients follows the same path
as the stiffness coefficients.
As depicted in Fig. 4, the stiffness coefficients Kyy, Kyz, Kzy, Kzz

and the damping coefficients Cyy, Cyz, Czy, Czz of a bearing are
equally divided by five, which equals the number of surface
nodes, and are added to each surface node on the journal. Bearing
lubricant-induced forces occur on the longitudinal length of the
shaft inside the bearing, which is also called the journal. The
bearing forces are assumed to be equally distributed (the distribu-
tion proportion is adjustable) on the surface nodes of the journal
in the axisymmetric element model. A thin-walled journal model
may also be artificially stiffened (an increase in modulus of

elasticity of the element nodes represented by circles shown in
Fig. 4) for certain types of bearings. The degree of artificial stiffen-
ing can be varied by the analyst to balance excessive journal defor-
mation versus the increased numerical integration time that may
result from artificial stiffening [24] (Sec. 4.8.17 in Ref. [24]).
The bearing forces are applied to the journal in a distributed

manner because applying the forces or linearized force coefficients
(stiffness, damping, inertia) at a single node may result in excessive
local deformation at the point of application especially when the
journal is thin walled and the bearing forces or dynamic coefficients
are large. The simulation results will later illustrate this by an
example.

Centrifugal Stress-Stiffening. Centrifugal stress-stiffening may
have a significant effect on rotor dynamic response especially at
high spin rates and for highly flexible disks and shafts. Consider
a rotating shaft-disk system. The disk is radially under tensile
load due to the centrifugal forces, which creates a restoring force
for axial deflection and hence raises the disk’s bending stiffness
and natural frequencies for disk flexural and axial modes. As the
tensile load causes radial strain expansion, only the component
of the zeroth-order harmonics is associated with the centrifugal
stress-stiffening.
To include the centrifugal stress-stiffening effects, an improved

formulation of the axisymmetric FE rotor model in the cylindrical
coordinate system is presented in this section, as an extension to
Cook et al.’s work [11]. The centrifugal forces cause the initial
strain ɛ0 and the initial stress σ0 prior to the bending of the rotor,
as shown in Fig. 5.
As the rotor has further deformations on the basis of the initial

strain, the strain energy U that excludes the elastic potential
energy caused by centrifugal forces prior to rotor bending consists
of two parts: one caused by centrifugal forces (represented by the
shaded area in Fig. 5) and the other resulting from rotor displace-
ment (represented by the blank area in Fig. 5). The strain energy
of the spinning rotor when bending U may be expressed as

U =
1
2

∫
V
{ε}T{σ}dV +

∫
V
{ε}T{σ0}dV (11)

where the first and second components represent the two parts of the
elastic potential energy shown in Fig. 5, respectively. The terms {σ}
and {ε} are vectors containing the component stresses and strains,
which exclude the initial stress and strain. The term {σ0} is a
vector containing the initial stresses induced only by centrifugal
force.
The linear small strain (also called infinitesimal strain) model,

which is widely used in engineering (including rotor dynamics),
may not be an appropriate model for rotors with highly flexible
disks or blades. This is because the small rotation assumption for
the small strain model may be violated when the amount of rotation
(such as for bending of a flexible disk) becomes large. A remedy is
to employ the Green strain model in mechanics with the tensorial
strain, ε̃. Only the second-order terms of ε̃ are related to the centrif-
ugal force-induced strains in rotor bending [11]. Replacing tensor-

Fig. 4 Add stiffness and damping coefficients of a bearing to
the nodes in the longitudinal semi-section of a shaft: triangles
and circles represent the surface nodes and the stiffened
element nodes, respectively Fig. 5 Strain energy due to centrifugal forces and vibration
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based shear terms in ε̃ with engineering shear strains yields the
second-order strains as

ε2r =
1
2

∂ur
∂r

( )2

+
∂uz
∂r

( )2

+
∂uθ
∂r

( )2
[ ]

ε2z =
1
2

∂ur
∂z

( )2

+
∂uz
∂z

( )2

+
∂uθ
∂z

( )2
[ ]

ε2θ =
1
2r2

ur +
∂uθ
∂θ

( )2

+ uθ −
∂ur
∂θ

( )2

+
∂uz
∂θ

( )2
[ ]

γ2rz =
∂ur
∂r

∂ur
∂z

+
∂uz
∂r

∂uz
∂z

+
∂uθ
∂r

∂uθ
∂z

γ2zθ =
1
r

∂uθ
∂z

ur +
∂uθ
∂θ

( )
+
∂ur
∂z

−uθ +
∂ur
∂θ

( )
+
∂uz
∂z

∂uz
∂θ

[ ]

γ2rθ =
1
r

∂uθ
∂r

ur +
∂uθ
∂θ

( )
+
∂ur
∂r

−uθ +
∂ur
∂θ

( )
+
∂uz
∂r

∂uz
∂θ

[ ]

(12)

where the subscript 2 indicates the second-order strains.
The strain energy due to the bending of the rotor that undergoes

centrifugal forces may be expressed as

Ue
σ =

∫
Ve

{εe2}
T{σe0}dV (13)

The elastic potential energy shown in Eq. (13) is derived from
Eq. (11) by excluding the first-order strain terms.
The generalized force representing the centrifugal forces and cor-

responding to the jth node DOF may be expressed as

Qe
Vj =

∫
Ve

dFVr
⇀er · ∂ur∂qej

⇀er

( )

=
∫2π
0

∫
Ae

ρΩ2r
∑N
m=0

∂UmrS

∂qej
cos(mθ) +

∂UmrA

∂qej
sin(mθ)

( )
dAdθ

(14)

where dFVr is centrifugal forces per unit volume and can be
expressed as dFVr= ρΩ2r. qej is the jth node DOF of the element.
UmrS and UmrA are defined in Eq. (1). It can be seen from
Eq. (14) that the integral over the circumferential angle θ = 0 ∼
2π eliminates the first- and second-order harmonics. That said,
only the zeroth harmonics contribute to the initial stress and strain
caused by centrifugal forces.
Applying the Lagrange’s equations to the strain energy caused by

centrifugal forces yields

∂Ue
0

∂qej
= Qe

Vj withUe
0 =

1
2

∫
V
{εe0}

T{σe0}dV (15)

where Ue
0 represents the elastic strain energy of the element caused

by centrifugal forces prior to the bending of the rotor. σe0 and εe0 are
initial stress and strain caused by centrifugal forces, respectively.
The node displacements induced by centrifugal forces {Ue

R} can
be solved based on Eq. (15). For isotropic homogeneous elastic
materials, the initial stress {σe

0} can be obtained from

{σe0} = [D][∂]{Ue
R} (16)

where the linear stress–strain constitutive matrix [D] and partial
derivative matrix [∂] can be found in Ref. [11].
Substituting Eqs. (12) and (16) in Eq. (13) yields the strain

energy due to centrifugal forces Ue
σ as

Ue
σ =

1
2

∫
Ve

{δeσ}
T [Seσ]{δ

e
σ}dV (17)

where [Seσ] represents the centrifugal stress matrix. {δeσ} is the
expanded strain vector derived from Eq. (12) by rearranging the
second-order strain terms. Both are specified in the Appendix. By
using the shape functions and node DOF shown in Eq. (2), Ue

σ
can be further rearranged as

Ue
σ =

∑N
m=0

1
2
{qem}

T
∫
Ve

[Ge
σm]

T[Seσ][G
e
σm]dV

( )
{qem} (18)

Applying Lagrange’s equations to Eq. (18) yields the elemental
centrifugal stress-stiffening matrix for the mth harmonics [Ke

σm] as

∂Ue
σ

∂{qem}
= [Ke

σm] =
∫
Ve

[Ge
σm]

T[Seσ0][G
e
σm]dV (19)

where {qem} represents the DOF vector for the mth harmonics. The
total DOFs qej contain the DOF for all harmonics and thereby
include {qem}. [K

e
σm] is given in the Appendix. Although only the

zeroth modes contribute to the initial centrifugal stress, the strain
energy due to centrifugal forces for the bending rotor is contributed
by all harmonics. [Ke

σm] is the final centrifugal stress-stiffening
matrix that will be used in the equation of motion for the axisym-
metric solid element model.

Spin-Softening. In addition to the stress-stiffening effects, rotor
spin induces so-called spin-softening effects. The effects are most
pronounced for flexible disks or large-diameter, thin-walled
shafts. Prior publications [11,22] provided qualitative discussions
of this phenomenon but did not develop a formal FE treatment
for the spin-softening effects utilizing axisymmetric elements.
Consider an axisymmetric element in a rotor. The additional

body force ΔFr results from the extension of the element beyond
the initial element radius (distance between the element and the cen-
terline of the rotor), which is caused by centrifugal forces. However,
unlike the centrifugal forces discussed in Eq. (14), ΔFr is indepen-
dent of the element radius r. This can be explained by

Fr = Ω2
∫
Ve

ρ(r + ur)dV ⇒ ΔFr = Ω2
∫
Ve

ρurdV (20)

where ur is the radial displacement of the element with respect to the
axis of symmetry. Then, the generalized external load Qe

S may be
written as

Qe
Sj =

∫
Ve

d(ΔFr)
⇀er · ∂ur∂qej

⇀er =
∫2π
0

∫
Ae

ρΩ2ur
∂ur
∂qej

dAdθ (21)

where the subscript j indicates jth node DOF of the element.
Applying Eqs. (1) and (2) into Eq. (21) and further applying

Lagrange’s equations yields the elemental spin-softening matrix
for the mth harmonics [Ke

Ωm] as

[Ke
Ωm] =

∂{Qe
S}

∂{qem}
=
∫
Ve

[Nm]
T

ρΩ2 0 0
0 0 0
0 0 0

⎡
⎣

⎤
⎦[Nm]dV (22)

Extra attention needs to be given to the zeroth harmonics that
have a different formulation. [Ke

Ωm] is given in the Appendix.

Model Reduction. A solid element model may involve thou-
sands of DOFs more than a beam element model. Thus, a reduction
technique is desirable to obtain a solution within practical compu-
ter time limits. The Guyan reduction method [27] has been success-
fully applied to the shaft axisymmetric FE model in Ref. [10]. The
master DOFs for this reduction technique are selected in such a way
that the DOFs with large damping, inertia, or external load are
retained [24].
To verify the effectiveness of the Guyan reduction method in

terms of natural frequency prediction, the reduction technique is
applied to a three-disk rotor without bearing support at the two
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ends (the same rotor as shown in Fig. 6 with bearings excluded).
The master DOF selection algorithm presented in Ref. [28] is uti-
lized to select retained degrees-of-freedom. This algorithm com-
putes Qi for each DOF, where Qi=Kii/Mii, and Kii and Mii denote
the ith main diagonal term of the stiffness and mass matrices,
respectively. The quantity Qi is used to determine whether the
inertia terms are small. The algorithm tends to retain small Qi.
The natural frequencies of the three-disk rotor at the spin speed of

0 rpm are compared between the unreduced and reduced axisym-
metric FE models. The comparison results are illustrated in
Table 1. The reduction levels are listed in the first row. The differ-
ence percentages between the unreduced and reduced models are
given in the brackets. The measured natural frequencies obtained
from Ref. [29] are included in the brackets of the second column.
The retained DOF ratio is the ratio of the retained DOF number
to the unreduced/original DOF number. According to the master
DOF selection algorithm, the DOF with the smallest Qi will be
retained. It can be concluded from Table 1 that (a) Guyan reduction
method is sufficiently accurate in terms of natural frequency predic-
tion and (b) the accuracy decreases with higher modes.
To fairly compare axisymmetric solid and beam element models,

however, the Guyan reduction method was not applied in the fol-
lowing comparison.

Simulation Results
The axisymmetric FE formulation derived above and in the

Appendix is implemented in the rotor dynamics code. Before
using the improved axisymmetric FE model for simulation, mea-
sured data for a three-disk rotor with two tilting-pad bearings
support [30] is used to validate the rotor dynamics code. First, the

rotor is discretized with beam elements in the same way as shown
in Table 2 of Ref. [30]. Then, an improved axisymmetric solid
element rotor model is constructed as shown in Fig. 6 (axisymmet-
ric element semi-section of the rotor revolves into a 3D rotor
model).
As Table 2 illustrates, the natural frequency differences between

the axisymmetric element model and measured data for the lowest
five modes of the rotor system operating at 4000 rpm are no more
than 5.1%. The results obtained from the axisymmetric FE model
is more accurate than from the beam FE model for all modes
except for the third mode. As pointed out in Ref. [30], the large dif-
ferences between the FE model and the measurement are caused by
the neglecting of foundation structure effects. Overall, the improved
axisymmetric FE model presented in this work is verified to be suf-
ficiently accurate for the following comparisons with the beam
element model.
A variety of simulation cases are presented in the following sec-

tions to compare beam FE and axisymmetric solid FE rotor models
and develop guidelines for appropriate selection of one or the other
for specific applications.

Bearing Attachment. As mentioned in the previous bearing
attachment section, excessive local distortions may occur if the
bearing linear dynamic force coefficients (stiffness and damping)
are not connected to the axisymmetric elements model in a
manner that distributes the bearing forces. To illustrate this, con-
sider the case of a cylindrical thin-walled shaft with L/DO= 4 and
t= 0.025DO (refer to Table 3 for definitions). As shown in Fig. 7,
the flexible shaft is supported by two identical symmetric bearings.
The bearing damping is set to zero. The bearing stiffness is set as
Kyy=Kzz= 5KS (i.e., stiff bearing), where (KS= 48EI/L3) is

Fig. 6 Revolved axisymmetric solid element model of a three-disk rotor with two tilting-
pad bearings support

Table 1 Free-free natural frequencies of the non-rotating three-disk utilizing the master DOF selection algorithm and measured data
obtained from Ref. [29]

Retained DOF ratio 100% 50% 25% 10% 5% 2%
Running time of a desktop
with 3.7 GHz Intel Xeon
CPU (min)

277.14 41.65 10.30 4.75 4.30 4.04

Natural freq. for 1st
bending mode (Hz)

94.73
(measured= 94)

94.73 (+0.00%) 94.74 (+0.00%) 94.74 (+0.00%) 94.74 (0.01%) 97.74 (+0.01%)

Natural freq. for 2nd
bending mode (Hz)

208.36
(measured= 207)

208.36 (+0.00%) 208.36 (+0.00%) 208.38 (+0.01%) 208.41 (+0.03%) 208.43 (+0.03%)

Natural freq. for 3rd
bending mode (Hz)

357.63
(measured= 356)

357.65 (+0.00%) 357.66 (+0.01%) 357.75 (+0.03%) 357.92 (+0.08%) 357.98 (+0.10%)

Natural freq. for 4th
bending mode (Hz)

463.05
(measured= 463)

463.07 (+0.00%) 463.11 (+0.01%) 463.46 (+0.09%) 464.02 (+0.21%) 464.19 (+0.25%)
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defined as the bending stiffness of a simply supported shaft with a
central load.
Figure 8(a) shows modal deformations with the bearing coeffi-

cients applied at a single surface node, leading to excessive local
distortions of the journal. Figure 8(b) shows the same mode shape
with the bearing attachment made in a distributed manner as
described in the bearing attachment section. “Distributed” here
implies that each bearing stiffness coefficient is equally (or adjust-
able) divided by the same number of surface nodes of the journal
and then attached to the surface nodes. This may help to eliminate
unrealistic local deformations and warping.

Parameter Studies. The present paper identifies specific design
features of a rotor system that is likely to cause inaccurate natural
frequency predictions when using the beam FE model. Table 3 pro-
vides a list of related rotor parameters.

Cylindrical Thin-Walled Shaft. As depicted in Fig. 7, a dimen-
sionless straight hollow shaft is supported by two identical bearings

with symmetric stiffness (i.e., Kxx = Kyy=KB) and zero damping.
Various combinations of L/DO, t/DO, and KB/KS (KS has been
defined in the bearing attachment section of the simulation results
chapter) have been investigated, and simulation results are demon-
strated in Figs. 9 and 10. As can be seen from Fig. 9, the difference
of free-free natural frequencies between solid and beam FE models
becomes larger as shaft wall thickness gets thinner (i.e., t/DO

decreases). When t/DO= 0.04, the difference exceeds 10%. The
dimensionless natural frequency ω̂n is defined as

ω̂n = ωn

����
MS

KS

√
withMS =

ρπ

4
(D2

O − D2
I )L (23)

where ωn is the natural frequency of the shaft.
Varying the bearing stiffness coefficients from 0.1 to 5 times the

bending stiffness of the shaft with a central load shows the impact of
bearing parameters on the prediction difference between axisym-
metric FE and beam FE models. As can be seen from Fig. 10, the
higher the bearing stiffness (i.e., KB/KS increases), the larger the dif-
ference. In addition, a shorter shaft (i.e., L/DO shown in the upper
figures of Fig. 10 are smaller than in the lower figures) or a
thinner shaft wall (i.e., t/DO shown in the left figures of Fig. 10
are smaller than in the right figures) also results in a larger predic-
tion difference of natural frequencies.

Stepped, Thin-Walled Shaft. This section investigates a thin-
walled shaft composed of both straight and conical/stepped seg-
ments. The conical/stepped segment is modeled with conical
beam elements [7]. As Fig. 11 shows, the shaft is divided into

Table 2 Comparison between beam element and axisymmetric
solid element models of a three-disk rotor with two tilting-pad
bearings support, operating at the spin speed of 4000 rpm

Natural
frequency

Measured data
from Ref. [29]

(Hz)
Beam element

(Hz)
Axisymmetric

solid element (Hz)

ω1 (backward) N/A 30.79 29.62
ω2 (forward) 31.25 32.95 (+5.4%) 31.64 (+1.2%)
ω3 (backward
and forward)

110.0 106.24 (−3.4%) 104.35 (−5.1%)

ω4 (backward
and forward)

125.0 132.11 (+5.7%) 127.10 (+1.7%)

ω5 (forward) N/A 139.59 139.01

Table 3 Parameters of axisymmetric and beam FE rotor models

Variable Definition

L/DO Ratio of the straight shaft length to the shaft outer diameter, refer
to Fig. 7

t/DO Ratio of the shaft wall thickness to the shaft outer diameter, refer
to Fig. 7

Ld/DO Ratio of the disk thickness to the straight shaft outer diameter,
refer to Fig. 15 for Ld

θ Taper angle of the conical segment of a shaft, refer to Fig. 11 for θ
t/DOr Ratio of conical segment wall thickness to shaft outer diameter at

the right end, refer to Fig. 11 for DOr

KB/KS Ratio of the bearing stiffness to the structural stiffness of the shaft,
refer to the cylindrical thin-walled shaft section for KB and KS

1 or 2 The number of disks and their locations

Fig. 7 Straight hollow shaft supported by two bearings

Fig. 8 Modal deformation of a thin-walled journal with stiff
bearing supports: (a) point bearing attachment and (b) distribu-
ted bearing attachment

Fig. 9 Percentage difference of natural frequencies between
axisymmetric and beam FE models for a free-free straight thin-
walled shaft with L/DO= 4
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20 elements (the conical shaft segment generally consists of two
elements, but the purely stepped shaft segment consists of one ele-
ment and the conical segment with θ = 11 deg consists of five ele-
ments). A variety of thin-walled shafts with t/DOr= 0.025 and the
gradually decreasing taper angles from 90 to 11 deg have been
modeled with axisymmetric FEs, which are illustrated in Fig. 12.
Figure 13 shows the percentage difference variation of the first

bending rotor mode versus taper angle, for the stepped diameter
rotor. The percentage difference is defined as the ratio of the
natural frequency difference between the beam element and axisym-
metric element models to the natural frequency of the axisymmetric
element model. It can be seen from the simulation results shown in
Fig. 13 that as the taper angle gets smaller, the natural frequencies
for the first bending mode predicted by the axisymmetric FE
model become closer to those predicted by the beam FE model. As
shown in Fig. 14, clearly non-beam deformations occur at the step
location in the axisymmetric FEmodel, indicating that itmay be inac-
curate to use beam elements to model a stepped thin-walled shaft.

Thin-Walled Shaft With Flexible Disks. For a beam FE rotor
model, a disk is typically represented by a rigid body with concen-
trated mass and inertia. However, its flexibility may become impor-
tant as it gets relatively thin in comparison with the shaft diameter.
Furthermore, if the first flexural modes of the disk appear within the
operating speed range, the disk should not be treated as a rigid body.

A rotor system composed of a thin-walled shaft and a flexible disk is
utilized to investigate the influences of a disk flexibility on natural
frequencies. The corresponding 2D triangle mesh of the longitudi-
nal section of the rotor is shown in Fig. 15 (the bottom semi-
section is added just for visualization). The disk diameter is set as
four times the outer diameter of the shaft. The stiffness of the two
bearings that support the shaft at both ends varies from 0.1 to 5
times the bending stiffness of the shaft with a central load KS (the
same definition as in the bearing attachment section of the simula-
tion results chapter). The other nondimensional constants that char-
acterize the model include L/DO, t/DO, and Ld/DO.
Simulation results are presented in Fig. 16, which show increas-

ing difference between axisymmetric FE and beam FE model
natural frequency predictions in the rocking mode as either the bear-
ings get stiffer (i.e., KB/KS increases) or the shaft wall gets thinner
(i.e., t/DO shown in the left figures of Fig. 16 are smaller than in the
right figures). This results from the greater amount of shaft deforma-
tion occurring as the bearings become stiffer and the wall thickness
becomes smaller, which also affects the amount of shaft out of plane
cross-sectional warping.
For illustration, consider comparing the natural frequency differ-

ences between the axisymmetric FE and beam FE model predictions
at KB/KS= 5 (i.e., stiff bearing). As is shown in Fig. 16, the percent-
age difference decreases only by 4.9% in the rocking mode when
just the shaft wall thickness ratio t/DO is increased from 0.05 to
0.2, and the disk is relatively thick with Ld/DO= 0.5. In contrast,
the percentage difference rises significantly by 55.8% with a
decrease in the disk thickness Ld/DO from 0.5 to 0.2. This indicates
that in the rocking mode disk thickness changes contribute more to
the natural frequency difference than shaft wall thickness changes
do. The thicker disk has only a slight effect on the difference in
the bouncing and first bending modes. This results from the cross
sections near the mid-span deforming heavily in the rocking
mode while only slightly in the other two modes, which can be
seen from Fig. 17. Additionally, an axisymmetric FE model can
predict the first disk diametral mode while a beam FE model cannot.
The next example considers a rotor with two flexible disks and a

thin-walled shaft. As shown in Fig. 18, the shaft length is set as L/
DO= 15, and the disk diameter is four times the outer diameter of
the shaft. Two disks are installed at 1/4 and 3/4 length along the
shaft. The variables considered are shaft wall thickness, disk thick-
ness, and bearing stiffness. The lowest three mode shapes and their
labels are provided in Fig. 19.

Fig. 10 Dimensionless natural frequencies of the straight thin-walled shaft supported by
two bearings with four different rotor configurations

Fig. 11 Beam element model for a stepped thin-walled shaft
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Figure 20 shows that for both bouncing and rocking modes, the
predictions by the axisymmetric FE model are close to those by
the beam FE model. This result can be explained the same way
as in the straight thin-walled shaft case, i.e., the long shaft design
with L/DO= 15 helps reduce the difference. Nevertheless,

non-beam-like deformations increase in the first bending mode as
the bearings get stiffer (i.e., KB/KS increases). A decrease in the
thickness of the shaft wall, i.e., t/DO shown in the upper left
figure of Fig. 20 are smaller than in the upper right figure, or the
disk, i.e., Ld/DO shown in the upper left figure of Fig. 20 are

Fig. 12 Axisymmetric element models of longitudinal semi-sections of the step shafts with different taper angles

Fig. 13 Percentage difference of natural frequencies for the first
bending mode between axisymmetric FE and beam FE models
for a free-free step-like thin-walled shaft

Fig. 14 Non-beam-like deformations of the solid element’s lon-
gitudinal section of the step shaft in the first bending mode

Fig. 15 Longitudinal section mesh of a thin-walled shaft with a
disk, shown here with L/DO=8, t/DO=0.05, and Ld/DO=0.2

Fig. 16 Dimensionless natural frequencies of a thin-walled shaft
with a disk supported by two bearings with four different rotor
configurations
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smaller than in the lower left figure, may cause severer non-beam-
like deformations. As a result, the difference between the axisym-
metric FE and beam FE models rises even with a long shaft.
However, the difference may be not apparent when either the
shaft or the disk is thick, i.e., t/DO= 0.2 or Ld/DO= 0.5, which
can be seen from the other figures of Fig. 20.

Summary and Conclusions
An axisymmetric solid element approach with improved model-

ing capabilities for flexible rotor systems has been presented along
with illustrative numerical examples and parametric studies.
Improvements include the centrifugal stress-stiffening and spin-
softening effects. More accurate simulations of thin-walled shaft
and flexible disk rotor dynamic response can be attained by using
the improved axisymmetric elements.
The implementation of the centrifugal stress-stiffening and spin-

softening matrices enables an accurate prediction of the change of
resonant frequencies and critical speeds caused by the rotation of
the rotor.
Bearing forces are distributed to a number of nodes within the

range of the longitudinal bearing length rather than a single
surface node of the journal to prevent fictitious, excessive local dis-
tortions of the thin-walled journal.
Only the zeroth-, first-, and second-order harmonics are included

in the axisymmetric FE model.
Both thin-walled shafts and flexible disks are prone to non-beam-

like deformations. Natural frequency predictions using beam FE
differs more from axisymmetric FE predictions when the shaft
length gets shorter and wall gets thinner. Investigation of various
thin-walled stepped shafts with straight and conical segments

shows that the difference between the axisymmetric FE and beam
FE predicted natural frequencies becomes larger with the increase
in the taper angle of the conical segment.
Disk flexibility and locations have an impact on the prediction

accuracy of the beam FE model compared with the axisymmetric
element model. If a thin disk, implying more flexibility, is
installed at the mid-span of a thin-walled shaft, then a large predic-
tion difference tends to occur at the rocking mode due to large
deformations of the disk. In contrast, a large difference of pre-
dicted natural frequencies between the axisymmetric and beam

Fig. 17 Lowest four modes of a hollow shaft with a disk supported by two stiff bearings:
L/DO=8, t/DO=0.2, Ld/DO=0.2, shaft bouncing mode (top left), shaft rocking mode (top
right), the first shaft bending mode (bottom left), and the first disk diametral mode
(bottom right)

Fig. 18 Longitudinal section mesh of a thin-walled shaft with
two disks: L/DO=15, t/DO=0.05, Ld/DO=0.2

Fig. 19 Lowest three modes of a thin-walled shaft with two
disks, supported by two stiff bearings: L/DO=15, t/DO=0.2, Ld/
DO=0.2; shaft bouncing mode (top), shaft rocking mode
(middle), and the first shaft bending mode (bottom)
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FE models may appear at the first bending mode if two flexible
disks are symmetrically placed away from the center of the shaft
at quarter spans.
The comparison results can be used for guidance on choosing the

axisymmetric solid or the beam FE models in the rotor design and
rotor dynamic analysis.

Future Work
As the shaft wall gets thinner, the axisymmetric FE mesh model

needs refinement, which may require more computer resources. In
this case, a shell element model could be a better choice in terms
of computation efficiency. Thus, a thorough comparison of the axi-
symmetric FE model with the shell FE model should be conducted
in order to understand the pros and cons of these two rotor modeling
approaches. The centrifugal stress-stiffening and spin-softening
matrices developed in the present work should be integrated into
the axisymmetric FE model for the comparison.
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Nomenclature
q = node degree-of-freedom
r = element radius with respect to the axis of symmetry
A = area
D = diameter of the shaft or disk
E = elastic modulus of the shaft
I = second moment of inertia of the shaft
V = bounded volume region
⇀e = unit vector

[N] = shape function matrix
{Ue

R} = displacement vector of a rotor element
ρ = mass density
Ω = spin speed of the rotor

( )A, S = antisymmetric or symmetric component
( )I, O = inner or outer of the rotor
( )Or = outer right end of the rotor
( )R = rotor
( )e = elemental
( )m = mth harmonics

( )r, z, θ = radial, axial, or circumferential direction

Fig. 20 Dimensionless natural frequencies of a thin-walled shaft with two disks supported by two
bearings with four different rotor configurations

Appendix
As shown in Eq. (10), the generalized bearing force acting on the circle of node P, QP

j , can be expressed as

(a) when the DOF qj corresponds to UP
nrS shown in Eq. (1) with n = 0, 1, 2 . . .

QP
j = − Kyy

∑N
m=0

uPmrS + Kyz

∑N
m=0, 2, ...

uPmrS · (−1)m/2+
∑N

m=1, 3, ...

uPmrA · (−1)(m−1)/2
[ ]{ }

− Kzz

∑N
m=0, 2, ...

uPmrS · (−1)m/2+
∑N

m=1, 3, ...

uPmrA · (−1)(m−1)/2
[ ]

+ Kzy

∑N
m=0

uPmrS

{ }
· 0, if n is odd

(−1)n/2, if n is even

{ (A1)
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(b) when the DOF qj corresponds to UP
nrA shown in Eq. (1) with n= 0, 1, 2…

QP
j = − Kzz

∑N
m=0, 2, ...

uPmrS · (−1)m/2 +
∑N

m=1, 3, ...

uPmrA · (−1)(m−1)/2
[ ]

+ Kzy

∑N
m=0

uPmrS

{ }
· 0, if n is even

(−1)(n−1)/2, if n is odd

{
(A2)

The above equations are applicable even if the harmonics number m exceeds 2.
The expanded strain vector {δeσ} shown in Eq. (17) is written as

{δeσ} =
∂ur
∂r

,
∂ur
∂z

,
1
r

∂ur
∂θ

− uθ

( )
,
∂uz
∂r

,
∂uz
∂z

,
[

1
r

∂uz
∂θ

,
∂uθ
∂r

,
∂uθ
∂z

,
1
r

ur +
∂uθ
∂θ

( )]T
(A3)

As the elemental centrifugal stress-stiffening matrix shown in Eq. (19) can be further expressed as

[Ke
σm] = π

∫
Ae

([Ge
σmc]

T[Seσ0][G
e
σmc] + [Ge

σms]
T[Seσ0][G

e
σms])rdrdz (A4)

where

[Seσ] =
[σe0] [0] [0]
[0] [σe0] [0]
[0] [0] [σe

0]

⎡
⎣

⎤
⎦ (A5)

(A6)

(A7)

where 2* indicates that these three columns have the same form as the left three columns next to them except that the shape function terms
Nm1 are replaced by Nm2, and a similar convention for 3*.
As shown in Eq. (22), the elemental spin-softening matrix for the mth harmonics (m≠ 0) may be rearranged as

(A8)
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where

(A9)

where j= 2 indicates that the three columns have the same form as
the left three columns next to them except that the shape function
terms Nm1 are replaced by Nm2, and a similar convention for j= 3.
[Ke

Ωm] for the zeroth harmonics is different than Eqs. (A8) and
(A9). When m= 0, [Ke

Ωm] may be written as

(A10)

where

(A11)

(A12)

where the convention for j= 2, 3 is similar to Eq. (A9).
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