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ABSTRACT 
The purpose of this paper is to present a methodology to predict 
vibrations of drilllstrings for oil recovery service. The paper extends 
a previous model in the literature to include drill collar flexibility 
utilizing a modal coordinate condensed, finite element approach. The 
nonlinear effects of drillstring / borehole contact, friction and 
quadratic damping are included. Bifurcation diagrams are presented 
to illustrate the effects of speed, friction, stabilizer gap and drill collar 
length on chaotic vibration response. A study is conducted on factors 
for improving the accuracy of Lyapunov Exponents to predict the 
presence of chaos. This study considers the length of time to steady 
state, the number and duration of linearization sub-intervals, the 
presence of rigid body modes and the number of finite elements and 
modal coordinates. The results may be helpful for computing 
Lyapunov exponents of other types of nonlinear vibrating systems 
with many degrees of freedom. 
 
 
1 INTRODUCTION 
High demand for energy has forced the oil and gas industry to seek 
improved drilling methods. Their goal is to prevent or reduce failures 
in order to reduce cost and air pollution by eliminating equipment 
replacement, repeated drilling of wells and unnecessary down time. 
Failures are quite often associated with severe vibrations of the lower 
part of the drillstring (DS) due to the interaction between the rotating 
drillstring and the rock formation or surrounding water and drilling 
mud.  

Typically, a drillstring is composed of a hoisting and turning 
mechanisms (draw work, kelly or top drive), a drillpipe, drill collars, 
stabilizers and a drill bit or rock cutting tool. Drill collars are thick-
walled, large diameter pipes which provide the weight on bit (WOB) 
and prevent drill pipes from buckling by keeping them in tension at 
the surface. Stabilizers (centralizers) are located along the drill collars 
and above the drill bit, in the lower part of the DS known as the 
bottom hole assembly (BHA). The stabilizers have short sections and 

a diameter near that of the borehole (or wellbore) to help to center the 
BHA. They also improve the drill bit performance by preventing 
bending of the lower part of the drill collar [1, 2]. Figure 1 depicts a 
truncated length of drillpipe (top), a string of drill collars with 2 end 
stabilizers, the BHA and the drill bit. Interactions of the DS and the 
drilling fluid (mud), contact forces between the wellbore and 
drillstring and interaction between the borehole and the drill bit may 
cause severe vibrations that can damage the drilling equipment, the 
drillstring and/or the stabilizers.  

 
Figure 1. Major Components of the Drillstring Model. 
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Three types of vibrations are predominant in drilling. Axial 
vibrations (AV) results from interactions between the bits and the 
hole bottom. This may result in large fluctuations of WOB and 
suspended particulate phase SPP, erratic rate of penetration ROP, 
shaking of surface equipment at shallow drilling depths, loss of tool 
face and poor directional control. Torsional vibration (TV) results 
from drill collar resonance, bit chatter, stick-slip (SS) interaction 
between the bit and formation and modal coupling. Severe SS motion 
may even cause a stopping or reversing of the bit direction. Lateral 
vibrations (LV) are called whirling motion and results from 
interactions between the bits and formation, mass imbalance, bit 
whirl, and from fluid forces around the drillstring. LV also results 
from coupling between the lateral and axial directions and the 
presence of axial bit-bounce motions. 
The DS can vibrate in any or all of these types of vibrations and 
experience failures as indicated by reduction in the rate of penetration 
and drillstring or bit damage.  

This paper focuses on predicting lateral chaotic vibrations that 
result from imbalance, stabilizer borehole impacts and friction, and 
nonlinear damping. A lateral degree of freedom is assumed at the bit. 
This is a reasonable assumption because of oversize cutting (bit walk, 
runout, and formation swell compensation) which leaves a clearance 
between the bit-through diameter and the as drilled gage hole. A 
Timoshenko beam based finite element code is employed to model 
the drillpipe and the drill collars between two stabilizers. Modal 
condensation is utilized to reduce the number of degrees of freedom 
and computational time. The vibration response is categorized by the 
use of nonlinear dynamics techniques which include Lyapunov 
exponents (LE), bifurcation diagrams and Poincare maps. LE’s 
provide a measure of divergence or convergence of nearby 
trajectories and are calculated from the modal coordinate responses 
as an indication of chaotic vs. non-chaotic behavior. Chaotic motion 
must produce at least one positive Lyapunov exponent, hence it is 
sufficient to determine only the maximum LE.  

The proposed model includes mass eccentricity, fluid damping, 
Coulomb friction and stress stiffening due to the axial load from the 
drill collar weight. 

Vibration response predictions may assist drilling rig operators in 
changing a variety of controlled parameters such as rotary speed, 
drilling mud composition, stabilizer gaps, drill collar length, etc. This 
will ultimately lead to improved procedures for oil and gas recovery, 
a decrease in equipment failure, cost savings and reduced emissions.  

 
 

2 LITERATURE REVIEW  
Most of the drillstring vibration literature focuses on models of parts 
or components of the entire drilling rig. Boundary conditions are 
assumed to facilitate these partial system models. These models are 
utilized to help explain direct, or indirect (damage) measurements of 
drillstring vibration.   

Lin et al. [3] proposed a single-degree-of-freedom torsional model 
including the effect of dry friction. The dry friction coefficient 
decreases with angular velocity from its static value and 
asymptotically approaches a constant kinetic value at infinite angular 
velocity. There was a good agreement of the self-excited stick-slip 
oscillations with field measurements.  

Brett [4] showed that polycrystalline diamond compact (PDC) bits 
can cause severe torsional vibration, a rotary speed increase leads to a 
decrease in torque and higher WOB may result in severe torsional 
vibrations. 

The torsional drillstring model proposed by Cull and Tucker [5] 
includes two representations for Coulomb friction: i) a piecewise 
friction profile and ii) a continuous and smooth nonlinear friction 
profile.   

Mihajlović et al. [6] utilized a Coulomb friction model for the top 
drive and a humped friction model for the BHA and drill bit. 
Simulation results showed good agreement with those obtained from 
an experimental DS set-up. 

Navarro-López and Cortés [7] used a lumped-parameter torsional 
model to study stick-slip oscillations. Their model includes four 
elements: top drive, drill pipes, BHA and the drill bit.  Hopf 
bifurcations plots were utilized to extract the parameters that yield 
non-desired torsional oscillations. 

Jansen [8] developed a 2 degree of freedom, rotordynamic 
“Jeffcott Rotor” model for a drill collar section between two 
stabilizers, the later modeled as bearings. Their results showed the 
effects of drilling fluid, stabilizer clearance and stabilizer-borehole 
friction on whirl amplitude, critical speed and stability. Simulation 
results agreed with field measurements.  

Van der Heijden [9] utilized the 2 degree of freedom model of 
Jansen [8] to analyze the responses for chaos Poincare diagrams and 
Lyapunov exponents.  

Kotsonis and Spanos [10] studied lateral vibrations of the BHA. 
The effects of fluid damping, wall contact, mass eccentricity, initial 
curvature of the drill collar and also linear and parametric coupling 
between the axial force and lateral vibration were considered. 
Coupling of the axial force and lateral vibrations resulted in chaotic 
motion. The minimum phase-volume deconvolution technique was 
used to identify chaos. 

Yigit and Christoforou [11] utilized a lumped parameter model to 
investigate coupled torsional - lateral vibrations. The predicted stick-
slip results were in close qualitative agreement with field 
measurements. An active controller mitigated stick-slip oscillations in 
their simulations.  

Leine et al. [12] studied drillstring vibrations using sub-system 
models for the stick-slip and for the whirl motions. Their work 
showed that increasing the rotary speed will result in a change from 
stick-slip to whirl motion as evidenced by downhole measurements.  
However there was no clear evidence that decreasing the rotary speed 
would result in a reversal of the motion from whirl to stick-slip 
motion. This behavior was explained by the presence of multiple 
stable solutions on the bifurcation diagrams. 

Yigit and Christoforou [13] employed an Euler-Bernoulli beam, 
assumed modes model to study the coupling of axial and lateral 
vibrations. The impact of the drillstring with the borehole wall was 
modeled using Hertzian contact theory. The coupling of the 
vibrations yielded a value of the critical axial load lower than the one 
obtained from a linear analysis and resulted in chaotic response.  

Richard et al. [14] studied the coupling between the torsional and 
axial vibrations modes resulting from the bit-rock interaction. Their 
model considered the inertial moment of the BHA and showed the 
existence of self-excited vibrations characterized by stick-slip 
oscillations. It was shown that the fundamental source of the self 
excitation (instability) was that the cutting force and torque lagged 
the penetration rate. 

Their work was extended by Zamanian et al. [15] who took into 
account the rotation of the rotary table, active damping at the top and 
damping of the drilling mud. Unlike the Richard et al. conclusions, 
they indicated that the system could always be stable by an 
appropriate selection of system parameters, and showed that stick-
slip vibrations could be observed from the amplitude of the 
oscillations of the rotary table.  

Yigit and Christoforou [16] investigated the coupled torsional and 
axial vibrations at the drill bit considering effects of weight-on-bit, 
torque-on-bit and cutting condition. They showed that feedback 
control could suppress stick-slip and bit-bounce vibrations.  

Elsayed et al. [17] investigated the effect of torsion on the stability 
of the drillstring and on the axial and torsional loads. A lump-
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parameter model was used and a mode summation method was 
applied to reduce the order of the system.  

Christoforou and Yigit [18] studied the coupling of axial, lateral 
and torsional vibrations using a lumped parameter model. The 
coupling arose from bit-formation and drillstring-borehole 
interactions as well as from geometric and dynamic nonlinearities. 
The stick-slip and bit-bounce simulations agreed well with field 
observations. In addition, they designed an active controller which 
was effective in reducing these oscillations. 

Melakhessou et al. [19] studied the contact zone of the BHA and 
separated it into two sections: one centered on the axis of the well 
and one connected to the first by a flexible string. The four-degree-
of-freedom model included the effects of bending and torsion, 
whirling motion as well as a Coulomb type friction between a tool-
joint and borehole, and the drillstring and borehole. Simulations 
result agreed well with those obtained with an experimental set-up 
and showed that their model was accurate enough to simulate the 
local contact between the drillstring and the borehole.  

The response of drag bits (or PDC bits) was investigated by 
Detournay and Defourny [20]. Their model accounted for both rock 
cutting processes and frictional contact between the cutter wearflats 
and the rock.  The model provided the relations between weight-on-
bit, torque, angular velocity and rate of penetration. 

Jogi et al. [21] determined the natural frequencies of axial, 
torsional and lateral vibrations of the BHA. The simulations results 
obtained with in-house models agreed well with field data obtained 
with downhole vibration measurement sensors.  

Spanos et al. [22] analyzed a drillstring with a roller cone bit 
utilizing a finite element model. The results indicated that rotary 
speeds corresponding to axial natural frequencies were critical speeds 
causing wide fluctuation of the weight-on-bit.  Increasing the rotary 
speed could cause the bit to lift off and the weight-on-bit to drop. 

In [23], Spanos et al. employed an Euler Bernouilli, based finite 
element model to simulate the BHA vibrations. The effect of axial 
force on the lateral vibration, damping as a function of mud density 
and vibration frequency and the added mass of the drilling fluid were 
accounted for in their model.  

Khulief et al. [24] modeled the drillstring including the drill pipes 
and drill collars using Euler-Bernoulli beam theory. Coupling of 
torsional and lateral inertia, axial-lateral geometric coupling, 
gyroscopic effect, and stick-slip interaction forces were included in 
the model. The effect of gravitation, generally ignored in other 
studies was also considered by splitting the drillstring into two 
sections: one in tension above the neutral point and one in 
compression below the neutral point. The order of the system was 
reduced using a modal transformation method. Transient responses 
resulting from various excitations were used to validate the model. 
Results indicated that lateral excitations affected axial and torsional 
vibrations and that frictional torque caused stick-slip oscillations.  

The present paper extends the work of Jansen [8] and Van der 
Heijden [9] who analyzed the lateral vibrations of the drill collar and 
BHA, including stabilizers at both ends. Our contributions include 
modeling of drill collar flexibility utilizing finite elements and modal 
coordinate reduction, characterization of chaos with Lyapunov 
exponents and a strange attractor map, and consideration of the 
effects of friction, drill collar length and stabilizer gap on chaotic 
vibration. The upper boundary condition employed by Jansen [8] and 
Van der Heijden [9] is also validated by comparing responses with 
and without the drillpipe. A study of parameter variation for 
computing the Lyapunov exponents of a larger order model is 
included and may provide a guide for studies of chaos in other types 
of vibrating systems.  

 
 

3 BACKGROUND THEORY  
The drill collar and drillpipe shown in Figure 2 are divided into 
Timeshenko beam (TB) finite elements to model lateral vibrations. 
Let the longitudinal axis of the beam lie on the local x1 axis. The 
equilibrium equations of the differential length beam subjected to 
shear forces 

2xV  and bending moments 
3xM  for the TB are given by 

[25] in the x1-x2 plane as 
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where E is the modulus of elasticity, G is the shear modulus, 
3xI  is 

the second moment of inertia about the x3-axis, KS2 is the shear 
correction coefficient in x1-x2 plane, A is the cross-sectional area, v is 
the transverse deflection and θ3 is the rotation of a transverse normal 
plane about the x3-axis. The beam stiffness also includes a stress 
stiffening term due to gravity, FG, acting along the axis of the 
drillstring. This axial tensile load increases the lateral stiffness of the 
drillstring and provides a pendulum restoring torque. The stress 
stiffening strain energy is given by [26] as 
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where u2 and u3 are the displacements of a point along the (x2, x3) 
coordinates. Inertia effects are modeled with a consistent mass 
matrix, including translational and rotary inertia terms.  
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Figure 2. A General Drillstring Including the Drillpipe, Drill 
Collar and Drill Bit. 

 
 

The imbalance forces due to mass eccentricity of the drill collar are 

 ( )temF exe ΩΩ= cos0
2

, 2
, ( )temF exe ΩΩ= sin0

2
, 3   

(3) 
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where t is time, e0 is the eccentricity of the drill collar mass (me) and 
Ω is the rotational frequency as shown in Figure 3. A nonlinear 
damping force due to the vibration of the drill collar in the 
surrounding mudflow is modeled as a velocity squared force at the 
midspan location on the drill collar [8, 9]: 
 

2
2
3

2
2, 2

xxxcF fxf &&& +−= , 
3

2
3

2
2, 3

xxxcF fxf &&& +−=  (4) 

where cf is the equivalent fluid damping coefficient. Linear damping 
forces are included at each stabilizer  
 2, 2

xcF dxd &−= , 3, 3
xcF dxd &−=   

(5) 

where cd is the damping coefficient. The linear damper model is 
employed due to the much smaller clearance at the stabilizers 
(centralizers). Gyroscopic torque is neglected due to the very low 
speed of the drillstring. 

Normal and tangential contact forces occur between the stabilizer 
and wellbore when the lateral displacement of the stabilizer becomes 
larger than the clearance, r > s0 (Figure 4). The normal contact force 
Fb,r is modeled as a linear spring with stiffness, kb. 
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Figure 3. End View of Deflected Drill Collar Showing Mass 

Eccentricity and Contact Point. 
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Figure 4. Contact Forces on the Stabilizer. 

The tangential, coulomb friction contact force is given by 
 ( ) rbbtb FsignF ,, ϖμ=  (7) 

where ω is the whirl speed and μb is the coefficient of friction. The 
stabilizer section is assumed to always slip when it contacts the wall. 

The system equation of motion has the general form  
 [ ]{ } [ ]{ } [ ]{ } { }FqKqCqM =++ &&&  (8) 
where {q} is the physical coordinates, {M} is the mass matrix, {C} is 
the damping matrix, {K} is the stiffness matrix, and {F} is the force 
vector including the nonlinear and imbalance forces described above. 
Bifurcation diagrams and Lyapunov exponents require 1000’s of 
transient simulations. Thus the direct integration of Eq. (8) is 
computation time prohibitive because of the large number of degrees 
of freedom and the presence of nonlinear forces that require very 
small integration time steps. Therefore a modal condensation 
approach was utilized since the orthogonality conditions [27]:  
 { } [ ]{ } ii

T
i mM ~=φφ , { } [ ]{ } 2~

iii
T
i mK ϖφφ −=  (9) 

yield uncoupled equations for the modal coordinates  
 22 ( )i i i i i i iy y y f tζ ϖ ϖ+ + = %&& &  (10) 
which are related to the physical coordinates by 
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where {φ}i is the mode shape, 
im~  is the modal mass, ωi is the natural 

frequency, ζi is the damping ratio, 
if

~  is the modal force and yi is the 
modal coordinates. Equation (11) is employed to recover the physical 
coordinates for evaluating the nonlinear forces during the integration. 
The number Nr of modes retained in Eq. (11) is determined by 
conducting a convergence study.  

Nonlinear response behavior is identified by employing one or 
more of the following devices: Frequency spectrums (FS), Poincaré 
maps (PM), Bifurcation diagrams (BD) and Lyapunov exponents 
(LE) [28]. The PM plots the position and velocity states at any degree 
of freedom for the same phase of each forcing cycle, after steady 
state conditions have been attained. Two dots indicate a 1/2 sub 
harmonic, three dots a 1/3 sub harmonic, a closed curve indicates 
quasi-periodic response and an area covered with points (strange 
attractor) indicates chaos. The BD plots the PM dots for a single state 
vs. a variable parameter of the system. An abrupt change in the 
number of dots as the parameter varies indicates the occurrence of a 
bifurcation such as period doubling, jump to another stable solution, 
etc. The LE provide a measure of the local stability of the nonlinear 
solution (x) by considering the convergence or divergence of 
linearized solutions (η) evaluated in consecutive time segments after 
the nonlinear solution attains steady state. 

Lyapunov exponents measure divergence or convergence of 
trajectories near to the nonlinear system solution represented by [28] 
 ( )xfx =&  (12) 
The solution of the linearized form of Eq. (12) is denoted by η and 
obtained from 
 ηη A=&  (13) 
where [ ]fA ∇=  is the nn×  Jacobian matrix of f.  Equations (12) and 
(13) are simultaneously numerically integrated after the nonlinear 
system has reached steady state. The linearized-system is reevaluated 
and integrated at equally spaced time intervals as the solution to Eq. 
(12) also progresses forward in time. A set of mutually orthonormal, 
initial condition vectors is calculated, using Gram-Schmidt 
orthogonalization, at the start of each time interval. Numerical 
integration of the linearized solution is started on each of these initial 
condition vectors and convergence / divergence of the resulting 
trajectories is evaluated. The first set of initial vectors at t0 are: 
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 ]1,...,0,0,0[)( 0

)0( =tnη  (14) 
The Gram-Schmidt procedure is then employed to construct a new set 
of othonormal initial values after integrating over the interval 

10 ttt ≤≤ . The Gram–Schmidt procedure is: 

 )( 1
)0(

1
)1(

1 tηη =  
 )1(

12)1(
1

1
)0(

2
)1(

1
1

)0(
2

)1(
2

)()( η
η

ηη
ηη

tt ⋅
−=

 (15) 

through 
 ∑

−

=

⋅
−=

1

1

)1(
2)1(

1
)0()1(

1
)0()1( )(

)(
n

i
i

i

mi
nn

t
t η

η

ηη
ηη

 (16) 

where ( )yx ⋅  denotes the inner product of the vectors x and y. The set 
of vectors { })1()1(

2
)1(

1 ,...,, nηηη  is orthogonal, and their orthonormal forms 
are given by 
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The norms in the denominator of Eq. (17) are denoted by k
iN , where 

the superscript refers to the kth time interval and the subscript refers 
to the jth vector. The Lyapunov exponents are obtained after N time 
intervals from 
 )(ln1

10

)( k
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N
i N
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=λ  (18) 

The norm k
iN  is the distance between the vectors 

)1()( −+ k
iktx η and )( ktx . For a chaotic system, this distance grows 

nearly exponentially in time for a chaotic system so that at least one 
of Lyapunov exponents will become positive. The presence of chaos 
is indicated by a positive value of the maximum LE. 
 
 
4 DRILLSTRING MODEL  

4.1 Model: 
The model consists of a drill collar assembly (DC) and 2 stabilizers at 
its end points. The Bottom Hole Assembly BHA is attached to the 
bottom of the drill collar in an actual drillstring. The BHA is much 
shorter and much lighter than the DC, therefore we treat the BHA as 
an integral part of the DC in the model.  The model parameters are 
listed in Table 1. The model includes nonlinear forces, an imbalance 
force applied at the midspan location of the DC and linear damping at 
the stabilizers. The DC mass is distributed uniformly along its entire 
length, which is an improvement over lumping the entire mass at the 
DC midspan as is done in reference [8, 9]. The model is assumed to 
have a constant rotational speed (rpm) which is valid under the 
assumption of uncoupled lateral and torsional motions. An imbalance 
force is positioned at the DC midspan in the model. The imbalance 
magnitude shown in Table 1 is held constant for all results provided 
in this paper. The model’s governing differential equations were 
numerically integrated with a Runge-Kutta algorithm including a 
variable time step.  

4.2 Boundary Conditions: 
The boundary conditions of the drill collar–stabilizer model are free-
free when the stabilizers are not in contact with the wellbore. The 
lowest free – free natural frequencies and mode shapes are shown in 
Table 2 and Figure 5 respectively. The 1st rigid body mode is for pure 
translation. The second rigid body mode has a slightly positive, non-
zero value due to the gravity (pendulum) restoring torque (Eq. (2)) on 

the rotational mode. These are some of the modes utilized in the 
modal response simulations discussed below. 

This type of boundary condition was justified in reference [8] by 
the assumption that the spin (imbalance force) frequency is near the 
lowest mode frequency of the isolated drill collar model as totally 
detached from the drillpipe above it.  The assumption was validated 
in our work by simulating the model of the DC with and without the 
drillpipe attached. The drillpipe was cantilevered at 100 meters above 
the top of the DC for this study.  The ratio of the DC to drill pipe area 
moments of inertias was approximately 50 so that the DC is much 
stiffer than the drillpipe which also supports ignoring the drillpipe, by 
analogy to the “dog (DC) wagging the tail (drillpipe)”. 

 
 

Table 1.  List of Drillstring Model Parameters.  
Drillpipe  
Drillpipe OD 0.1016 m 
Drillpipe ID 0.0848 m 
Drillpipe length 100 m 
Modulus of elasticity 2.1x1011 N/m2 
Material density 7850 kg/m3 
BHA ( Drill Collar)  
Drill collar OD 0.2286 m 
Drill collar ID 0.0762 m 
Drill collar length, L 23 m  
Modulus of elasticity 2.1x1011 N/m2 
Material density 7850 kg/m3 
Stabilizer clearance, s0 0.0254 m 
Drilling mud  
Drilling mud density 1500 kg/m3 
Fluid damping coefficient, cf 3943.35 N.s2 /m2 
Imbalance force   
Drill collar mass, me 6587 kg 
Mass eccentricity, e0  0.0127 m 
Contact force  
Wellbore stiffness, kb 1x108 N/m 
Friction coefficient, μb 0.2  
Damping at stabilizers  
Damping coefficient, cd 300 N.s /m 

 
 

Figure 6 shows the displacement response at the center of the drill 
collar and at one of the stabilizers for the “with” and “without” 
drillpipe cases, at 40 rpm. The response is seen to be sinusoidal at 
this rpm. Figure 7 shows the same responses at 55 rpm, at which the 
response is chaotic. The response locations are the same as for Figure 
6. These figures clearly show almost no difference with and without 
the drillpipe, which supports its removal from the model from all of 
the remaining simulations. The bottom free boundary condition on 
the drill collar is most appropriate with light weight on bit (WOB) 
operation. A lateral degree of freedom is assumed at the bit. This is a 
reasonable assumption because of oversize cutting (bit walk, runout, 
and formation swell compensation) which leaves a clearance between 
the bit-through diameter and the as drilled gage hole. 
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Table 2. Free–Free Natural Frequencies of Drill Collar - 
Stabilizer Model. 

 

Mode Natural frequencies 
(Hz) Damping ratio 

1 0 - 
2 0.2643 0.0166 
3 2.1654 0.1361 
4 5.8332 0.3665 
5 11.3734 0.7146 
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Figure 5. Lowest Mode Shapes of the Drill Collar–
Stabilizer Model (a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 

(e) Mode. 
 
 
 

5 RESULTS 

5.1 Nonlinear Forces: 
There are 3 sources of nonlinear forces in the model, including  
(a) a quadratic damper applied at the center of the drillstring to 

model the interaction force between the vibrating drill collar and 
the surrounding mud flow, 

(b) the intermittent contact forces between the stabilizers and the 
wellbore, and 

(c) the friction force between the stabilizers and the wellbore 
Each of the nonlinear forces discussed above have an influence on 
the predicted chaotic vibrations. To illustrate this consider the next 4 
figures which correspond to a model that has intermittent contact 
between the DC stabilizers and the wellbore wall. Figure 8(a) shows 
a bifurcation diagram for the model with no quadratic damping and 
no friction. This diagram plots the instantaneous transverse velocity 
at the DC midspan location at the starting time for each revolution, 
vs. rpm. The plot bifurcates from a sinusoidal response (single dot) to 
a chaotic response at 55.2 rpm. Figure 8(b) shows a bifurcation 
diagram for the model with quadratic damping and no friction. The 

plot bifurcates from a pure tone response to a chaotic response at 52.8 
rpm. Figure 8(c) shows a bifurcation diagram for the model without 
quadratic damping and with friction. The plot bifurcates from a pure 
tone response to a chaotic response at 52.4 rpm. Figure 8(d) shows a 
bifurcation diagram for the model with quadratic damping and with 
friction. The plot bifurcates from a pure tone response to a chaotic 
response at 49.6 rpm. Clearly these figures confirm that each type of 
nonlinear force has an influence on the nonlinear dynamic behavior 
of the systems based on the changes in chaos onset speed. Figure 8(a) 
shows that the clearance between the wellbore and stabilizer is 
sufficient to cause bifurcation and chaos.  
 

 
 

 
Figure 6. Vibrations at the Drill Collar Center (top) and 

Stabilizer (bottom), With (a) and Without (b) the Drillpipe, for a 
Non-Chaotic RPM. 

 
 

 
 

Figure 7. Vibrations at the Drill Collar Center (top) and 
Stabilizer (bottom), With (a) and Without (b) the Drillpipe, for a 

Chaotic RPM. 

(a) 

(b)

(a) 

(b) 

(a) (b) 

(c) (d) 

(e) 
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Figure 8. Bifurcation Diagrams for Model (a) without Friction 
and Quadratic Damping (b) without Friction and with Quadratic 
Damping (c) with Friction and without Quadratic Damping (d) 

with Friction and with Quadratic Damping. 
 
 

5.2 Physical Parameter Effects: 
Figure 9 shows that the chaos onset rpm and response amplitudes 
decrease as the coefficient of friction increases from 0.1 to 0.3. This 
diagram contains the transverse motion velocity at the DC midspan 
location.  The maximum Lyapunov exponent LE was determined for 
the same conditions as in Figure 9 and is shown plotted against rpm 
in Figure 10. The zero crossings in these plots clearly confirm the 
transition between harmonic and chaotic response as implied in 
Figure 9. For sake of reference the LE’s were determined after 2000 
revolutions to insure steady state conditions were present prior to 
evaluating the LE. The number and duration of the time segments for 
evaluating the LE were 500 and 0.1 revolution period, respectively. 
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Figure 9. Bifurcation Diagrams for Model with (a) μb = 0.1 (b) 
μb = 0.2 (c) μb = 0.3. 

 
 

Figure 11 shows the effect of changing the DC length on the 
bifurcation diagram parameters. The peak vibration amplitude and 
chaos onset speed are seen to decrease as the DC length increases 
from 15, 20, 21, 22, 23 and 25 meters. 

Figure 12 shows the bifurcation diagram for the DC midspan, 
transverse velocity with the stabilizer radial clearance varied from 
0.0127, 0.0254 and 0.0508 meters. These results indicate that 
clearance has a significant effect on the presence of chaos. The 
absence of chaos for the smallest clearance chaos indicates that a 
decrease in clearance may mitigate chaos.  

Figure 13 shows a Poincare plot for velocity vibration at the DC 
midspan. Sixty thousand points are plotted forming a strange attractor 
for the following conditions (L = 23 m, μb = 0.2, 55 rpm, s0 = 2.54 
cm). This is a clear indication of chaos since the 2 dimensional, area 
type structure of the strange attractor is indicative of chaos whereas a 
closed line type structure indicates a quasi-periodic type of response. 

 
 

6 CONCLUSION 
The paper presented a systematic approach for predicting and 
analyzing the lateral vibration response of the drill collar / BHA. A 
lateral degree of freedom is assumed at the bit. This is a reasonable 
assumption because of oversize cutting (bit walk, runout, and 
formation swell compensation) which leaves a clearance between the 
bit-through diameter and the as drilled gage hole. This condition is  
 

(a) 

(b) 

(c) 

(d) 

(b) 

(c) 

(a) 
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Figure 10. Maximum Lyapunov Exponent vs. Drillstring RPM 
with (a) μb = 0.1 (b) μb = 0.2 (c) μb = 0.3. 

 
 
consistent with a free bottom-end boundary condition and de-
coupling of the lateral vibration from the torsional and axial 
vibrations. Conclusions drawn from the study include: 
(1) Neglect of the drillpipe at the upper boundary of the drill collar 

is a reasonable approximation for lateral vibration modeling of 
the drill collar – BHA component under rotating, light bit 
contact conditions.  

(2) Converged Lyapunov exponents (LE) can be determined even 
for a system model containing many degrees of freedom such as 
the multi degree of freedom, modal model utilized here. The LE 
provided a reliable indicator of chaos as confirmed by 
comparison with bifurcation diagrams and Poincare (strange 
attractor) plots. Accurate LE’s required approximately 2000 
revolutions to reach steady state and approximately 500 time 
segments to evaluate divergence/convergence of linearized 
solutions, with each segment approximately 0.1revolutions in 
duration. 

(3) Stress stiffening effects should be included in the model to 
account for the vertical gravity load. Thus was manifested in the 
non-zero rigid body pendulum mode. 

(4) Gap and other nonlinear effects shift natural frequencies from 
their free or constrained values so that resonance peaks occur 
away from the linear natural frequency values.  

(5) The onset speed (rpm) for chaos was shown to be significantly 
affected by friction, stabilizer gap and drill collar length. This 
onset speed was indicated by a zero crossing of the maximum 
Lyapunov exponent. The Lyapunov exponents were obtained via 

an averaging approach which depends on the length of time to 
steady state, the number of time segments that are utilized and 
the length of these time segments. Convergence studies were 
conducted to determine the appropriate values for these 3 
factors.  Figure 14(a) and (b) show how the maximum LE 
converges with time for both a non-chaotic and a chaotic 
response, respectively. The model parameters of this case are:  

L =23m, μb = 0.1, s0 = 2.54cm,  
rpm = 50 (non-chaotic), rpm = 55 (chaotic) 

 
 

 
 

Figure 11. Bifurcation diagrams for Model with (a) 15m (b) 
20m (c) 23m and (d) 25m Long Drill Collar Section. 
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Tables 3, 4 and 5 show the dependence and convergence   
properties of the LE on the 3 factors described above. Table 3 
utilized 200 time segments with 0.1 revolutions per segment. 
Table 4 utilized 2000 revolutions as a time to steady state and 
0.1 revolutions per time segment. Table 5 utilized 2000 
revolutions to steady state and 500 time segments.  
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Figure 12. Bifurcation Diagram for Mid Span Transverse 

Velocity for Radial Clearance at Stabilizer of 
(a) 0.0127, (b) 0.0254 and (c) 0.0508 Meters. 

 
 

 
Figure 13. Poincaré Plot for Transverse Velocity at DC 

Midspan. 
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Figure 14. Maximum Lyapunov Exponent Convergence with 

Time for (a) a Non-Chaotic and (b) a Chaotic Response. 
 
 

Table 3. Maximum Lyapunov Exponents for Different Times to 
Steady State. 

 

 
 

Table 4. Maximum Lyapunov Exponents Obtained from 
Different Numbers of Time Segments. 

 
Number of time segments Maximum LE 

50 0.5178 
100 0.2225 
200 0.1892
500 0.1157 
700 0.0962 

1000 0.1008 
1500 0.0933 
2000 0.0844 

Time to steady state (rev) Maximum LE 
50 0.3897 
100 0.4714 
500 0.3314 

1000 0.5108 
1500 0.1710 
2000 0.1892 
2500 0.1403 
3000 0.2515 
3500 0.2601 
4000 0.2204 
4500 0.2083 
5000 0.1690 

(c) 

(b) 

(a) 

(a)

(b) 
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Table 5. Maximum Lyapunov Exponents Obtained from 
Varying the Time Segment Duration. 

 
Length of time step Maximum LE 

0.01*period 0.5178 
0.05 *period 0.1746 
0.10 *period 0.1157 
0.20 *period 0.1005 

 
The simulation times were considered excessive to employ 

physical coordinate for this study. Thus modal coordinates were 
employed. This required selection of the number and types of modes 
to utilize for convergence. Both rigid body and flexible modes were 
included in order to produce both types of behavior in the system 
response. The bifurcation diagrams were found to converge with 10 
modes, 

Future work will include lateral-torsional–axial coupling, the 
effects of PDC or roller cone bit, and drive dynamics. 
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