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Response
Part II presents a novel approach for predicting dynamic coefficients for a tilting pad
journal bearing (TPJB) using computational fluid dynamics (CFD) and finite element
method (FEM), including fully coupled elastic deflection, heat transfer, and fluid dynamics.
Part I presented a similarly novel, high fidelity approach for TPJB static response predic-
tion which is a prerequisite for the dynamic characteristic determination. The static
response establishes the equilibrium operating point values for eccentricity, attitude
angle, deflections, temperatures, pressures, etc. The stiffness and damping coefficients
are obtained by perturbing the pad and journal motions about this operating point to deter-
mine changes in forces and moments. The stiffness and damping coefficients are presented
in “synchronously reduced form” as required by American Petroleum Institute (API) vibra-
tion standards. Similar to Part I, an advanced three-dimensional thermal—Reynolds equa-
tion code validates the CFD code for the special case when flow Between Pad (BP) regions
is ignored, and the CFD and Reynolds pad boundary conditions are made identical. The
results show excellent agreement for this validation case. Similar to the static response
case, the dynamic characteristics from the Reynolds model show large discrepancies com-
pared with the CFD results, depending on the Reynolds mixing coefficient (MC). The dis-
crepancies are a concern given the key role that stiffness and damping coefficients serve
instability and response predictions in rotordynamics software. The uncertainty of the
MC and its significant influence on static and dynamic response predictions emphasizes
a need to utilize the CFD approach for TPJB simulation in critical machines.
[DOI: 10.1115/1.4043350]

1 Introduction
The modeling of a tilting pad journal bearing (TPJB) for deter-

mining dynamic characteristics (coefficients) is a challenging task
due to a large number of degrees-of-freedom involved, and the
high sensitivity of the characteristics to thermal, hydrodynamic,
and solid deformation influences. The coefficients ultimately
become inputs to a rotordynamics system response code for deter-
mining the stability, critical speed, and forced responses of rotating
machinery shafting. These codes typically have limitations on the
form of the TPJB characteristics, limiting them to relating only x
and y lateral motions and forces at a journal. The many degree of
freedom TPJB model is therefore reduced to “equivalent” two
degrees-of-freedom (2DOFs) form by assuming that all of the
TPJB degrees-of-freedom move with a frequency specified by the
analyst. Most often, this frequency is selected to be the shaft rota-
tional speed frequency, in which case, the equivalent (2DOFs) coef-
ficients are referred to as “synchronously reduced.”
In 1964, Lund [1] first presented a method for solving the iso-

viscous Reynolds equation to obtain TPJB frequency reduced
dynamic coefficients, assuming harmonic motions for the journal
and pads. In 1987, Knight and Barrett [2] coupled a one-
dimensional (1D) form of the energy equation with the Reynolds

equation to provide a thermo-hydrodynamic modeling approach
for TPJB dynamic characteristics. The shaft and pads were
modeled as rigid against both thermal and hydrodynamic pressure
loads. The mixing theory was adopted to estimate the inlet tempera-
ture of each pad, and the authors showed a high sensitivity of the
dynamic coefficient with respect to the variation of oil supply tem-
perature. In 1989, Brugier and Pascal [3] presented a TPJB model
including a variable viscosity Reynolds equation coupled to a three-
dimensional (3D) energy equation that assumed parabolically
varying temperature through the film thickness at the pad inlet. Pad
and pivot distortions were also included; however, the shaft temper-
ature was assumed to be constant. The dynamic coefficients were
obtained by slightly changing (perturbing) the shaft position and
velocity around the equilibrium condition assuming that the temper-
atures and distortions remained constant. Pad deformation was
shown to have a significant effect on the dynamic coefficients.
Since then, the effects of pad deformation have been further investi-
gated, and the modeling techniques have been further developed
by other researchers [4–7]. Recently in 2015, Suh and Palazzolo
[8] presented a new modeling method for the 3D thermo-elasto-
hydrodynamic of a TPJB. The generalized Reynolds and 3D
energy equations were employed, along with pivot flexibility and
shaft and pad heat conduction with effects on distortions. Mixing
theory with mixing coefficients (MCs) was applied at the boundaries
of the energy equation between the pads. A modal coordinate trans-
formation was utilized in the flexible pad dynamic model to reduce
computation time.

Contributed by the Tribology Division of ASME for publication in the JOURNAL OF

TRIBOLOGY. Manuscript received October 26, 2018; final manuscript received March
27, 2019; published online April 30, 2019. Assoc. Editor: Stephen Boedo.

Journal of Tribology JUNE 2019, Vol. 141 / 061703-1Copyright © 2019 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/141/6/061703/6778164/trib_141_6_061703.pdf?casa_token=dPlEBrdD

j80AAAAA:rkPkN
lR

ZqKj6Bw
D

jm
TO

C
Q

3JoI9w
X_AFet-N

m
8fix6A1xN

pPzIIL2w
qIeM

AfFL4im
gU

J5H
qsn by Texas A & M

 U
niversity user on 08 August 2023

mailto:jiyang@tamu.edu
mailto:a-palazzolo@tamu.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4043350&domain=pdf&date_stamp=2019-04-30


As discussed in Part I, the uncertainty of the MC leads to uncer-
tainty of the inlet temperature boundary conditions on the pads and
on all calculated quantities, such as peak pad temperature, drag
torque, etc. The present computational fluid dynamics (CFD)
approach eliminates the uncertainty associated with the MC by
including a detailed flow and thermal model in the volumes
between pads. Publications of research on applying CFD to
obtain the dynamic characteristics of TPJB are pause.
In 2005, Guo et al. [9] presented a CFD modeling technique for

the fixed pad, hydrodynamic and hydrostatic, bearings with the oil
inlet geometry, considering the Navier–Stokes and energy equa-
tions. Stiffness coefficients were obtained by imposing perturba-
tions of the shaft position, and damping coefficients were
calculated by utilizing the moving grid function in a commercial
code. In 2008, Meruane and Pascual [10] presented a transient,
3D, fluid–structure interaction (FSI), CFD model of a plain
journal bearing to determine nonlinear, rotor transient response
under various operating conditions. A numerical approach was
developed to obtain the nonlinear dynamic coefficients of a
Taylor series force model, including both displacement and velocity
perturbations. The transient CFD modeling technique has been
further developed in Refs. [11–13] to predict the nonlinear
dynamic behavior of rotors supported in fluid film journal bearings.
Reference [13] included thermal and elastic deformations of the
shaft and fixed pads, a flexible rotor, and detailed oil inlet geometry.
They did not consider tilt pad bearings or the calculation of stiffness
and damping coefficients. The modeling of a TPJB to determine
stiffness and damping coefficients employing a CFD-FSI approach
has not been reported until the present work.
The approach presented here is the first model of a TPJB includ-

ing 3D-CFD with multiphase flow, thermal–fluid interaction, tran-
sitional turbulence, convective term in the energy equation due to
shaft spin, pivot flexibility, and thermal distortions of the mechan-
ical system by two-way FSI modeling. Part II builds on the static
equilibrium model presented in Part I, by presenting a detailed mod-
eling approach for obtaining frequency reduced dynamic coeffi-
cients, and log decrement for rotordynamic response of a Jeffcott
rotor. The dynamic coefficients of the proposed CFD model are
also compared with the results of a high fidelity Reynolds model,
which, as illustrated in Part I for the static response, have significant
variability due to the uncertainty of the MCs. Thus, the CFD
approach presented may provide significant benefits in improving
accuracy for predicting dynamic coefficients of a TPJB.
The main contributions of this paper include:

(a) A TPJB modeling methodology that includes a CFD solution
of the Navier–Stokes and energy equations between pads for
predicting dynamic force coefficients.

(b) Investigation of the effect of MC uncertainty on the TPJB
dynamic force coefficient predictions, with a comparison to
CFD predictions.

(c) Results demonstrating that the conventional Reynolds—MC
approach may yield dynamic force coefficients that signifi-
cantly differ from those obtained by a higher fidelity CFD
model, even if the former utilizes a very wide range of MC.

2 Description of Fluid–Structure Interaction—
Computational Fluid Dynamics Model
2.1 Overall Description. Determination of the static response

of the TPJB including temperatures, pressures, eccentricity, attitude
angle, etc., as illustrated in Part I, is a necessary prerequisite for
obtaining the dynamic response characteristics. The geometry
and meshing are for the most part preserved from the static to
the dynamic response model. Figure 1 provides assembled and
exploded views of the TPJB geometry and modeling domains.
The subdomains in thefluidfilm domain are newly defined for pre-

scribing the perturbed velocity source term of the transport equa-
tions, which is used for calculating the damping coefficients.
Source terms in the governing equations due to the velocity

perturbations arise only in these subdomains and not in the BP
regions. Displacement perturbations for obtaining stiffness coeffi-
cients do not contribute source terms but instead modify the film
thickness distributions. Major simulation steps for the dynamics
response stage include hydrodynamic force and moment determina-
tion with the CFD-solver, dynamic coefficient evaluation using a
MATLAB code, and iteration control with a Job Script. These steps
are repeated for all coordinate perturbations in determining the full
set of dynamic coefficients (stiffness and damping).
Figure 2 shows a flow diagram of the computational solution

process for obtaining TPJB dynamic force characteristics (coeffi-
cients) via FSI modeling. The pads and journal are considered
rigid for the small perturbation dynamic analysis, although they
deflect in the static analysis. The perturbations are taken about a
static equilibrium state that is obtained by the methods provided
in Part I. All of the static equilibrium values of the dependent var-
iables including the equilibrium positions of the shaft and pads are
loaded into the CFD-solver, prior to starting the CFD solution for
the dynamics case. The dynamic system model’s CFD solution
solves the same equations as in the static system solution. Thus,
the CFD-solver includes incompressible multiphase flow, transi-
tional turbulence, and thermal–fluid interaction with variable
viscosity in the fluid film domain. Two key differences occur
between the static (Part I) and dynamic (Part II) models in the
FSI solver. The first is that the temperature distribution of the
solid domain is assumed to remain constant during a coordinate per-
turbation. This temperature distribution is obtained from the static
calculation and is forced to remain constant by imposing a 0 time-
scale factor in the energy equation. This is a reasonable assumption

Fig. 1 Configuration of tilting pad journal bearing model:
(a) overview and (b) exploded view
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due to the thermal time constants being much longer than the pres-
sure time constants resulting from the coordinate perturbations. The
second difference is that the perturbed displacements at the interface
boundaries between the shaft-pad and fluid film and the correspond-
ing perturbed velocity source terms of the transport equations need
to be considered for each subdomain, when calculating the full set
of dynamic coefficients. The Job Script controls the iteration proce-
dure while accumulating and saving the results for each coordinate
perturbation. The results provide the pressure induced reaction
forces acting on the shaft, and the moments acting on the pads.
These results are transferred to the MATLAB code after completing
all perturbation related computations. The MATLAB code determines
the full set of dynamic coefficients, which are then synchronously
reduced. This is the form commonly used and required by the
American Petroleum Institute (API) compressor standard, for eval-
uating the rotordynamic stability of a TPJB supported rotor via its
predicted log decrements.

2.2 Full Dynamic Coefficient Matrices

2.2.1 Stiffness Matrix. The full stiffness coefficient matrix is
obtained by imposing displacement and angular perturbations
(ΔxpbT ,ΔypbT ,Δδpb

T ,ΔppbT ) relative to the static equilibrium state,
as shown in Fig. 3. The illustrative example TPJB has five pads, so
it has 12 degrees-of-freedom, including two journal displacements,
five pad rotations, and five pivot displacements. Each degree of
freedom is perturbed in both positive and negative directions relative
to the static equilibrium, yielding a total of 24 perturbations to obtain
the full stiffness matrix. The magnitudes of the finite perturbations
are selected to balance the need for obtaining a numerically reliable
change in force or moment, while accurately approximating the def-
inition of stiffness as representing a slope at a point.
The magnitude of the perturbations is chosen from numerical

tests as 0.01Cl,b for the translational perturbations and 0.001 deg
for the angular perturbations.
The perturbation related displacements are added to the static

equilibrium counterparts to form “total” displacement equations.
These equations are imposed at the interface boundaries between
the shaft-pad and fluid film to solve the mesh deformation equation

Fig. 2 Flow diagram of CFD-based FSI TPJB modeling for dynamic performance prediction

Fig. 3 TPJB perturbations for stiffness: (a) pivot displacement
and pad angle of the jth pad and (b) x and y journal displacements
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for the perturbation. The total perturbed displacement equations are
applied at the interface boundaries and are derived from the film
thickness expressions. These allow mesh deformation only in the
radial direction, which conserves the orthogonal quality of the
mesh to improve convergence characteristics. The derivation of the
equations proceeds from the film thickness at the equilibrium state as

he
j(θ)={Cl ,p

j− (Cl ,p
j−Cl,b)cos(θ−θp

j)}−{xse−pe
jcos(θp

j)}cos(θ)

−{yse−pe
j sin(θp

j)}sin(θ)−δe
jRs sin(θ−θp

j)−hs,TEe−hp,TEe

(1)

Figure 4 illustrates the parameters used in Eq. (1)

h j
e, θ, θp

j, xse, yse, pej, δej, hs,TEe, hp,TEe, Rs

The first term is disregarded in the perturbation simulations since
it corresponds to the baseline geometry and mesh incorporating the
preload, bearing clearance, and pad clearance, when all displace-
ments of the TPJB are zero. The relative change of the film thick-
ness with respect to the equilibrium state, due to perturbations of
the pad and shaft motions is expressed in terms of the angular coor-
dinate θ as

Δhjp(θ) = Δppbj cos(θjp) cos(θ) + Δppbj sin(θpj) sin(θ)

− ΔδpbjRs sin(θ − θjp) (2)

Δhs(θ) = −Δxpb cos(θ) − Δypb sin(θ) (3)

The global coordinate x and y displacements of the pad and shaft
surfaces, relative to equilibrium, vary with angular coordinate θ and
the incremental film thicknesses in Eqs. (2) and (3).
Pad tilting and pivot motion displacements (θ):

Δxpj(θ) = Δhpj(θ) cos(θ) (4)

Δypj(θ) = Δhpj(θ) sin(θ) (5)

Shaft translational motion displacement (θ):

Δxs(θ) = Δhs(θ) cos(θ) (6)

Δys(θ) = Δhs(θ) sin(θ) (7)

Substitution of Eqs. (2) and (3) into Eqs. (4)–(7) yields

expressions for pad and shaft surface displacements relative to the
equilibrium state in terms of the pivot displacements, journal dis-
placements, and pad angles relative to the equilibrium state and
the angular coordinate θ.
Pad tilting and pivot motion displacements (θ):

Δxpj(θ) = {Δppbj cos(θpj) cos(θ) + Δppbj sin(θpj) sin(θ)

−ΔδpbjRs sin(θ − θp
j)} cos(θ) (8)

Δyjp(θ) = {Δppbj cos(θjp) cos(θ) + Δppbj sin(θjp) sin(θ)

− ΔδpbjRs sin(θ − θjp)} sin(θ) (9)

Shaft translational motion displacement (θ):

Δxs(θ) = {−Δxpb cos(θ) − Δypb sin(θ)} cos(θ) (10)

Δys(θ) = {−Δxpb cos(θ) − Δypb sin(θ)} sin(θ) (11)

The initial x and y coordinate (x0, y0) of the nodes at shaft-film
and pad-film interface boundaries are approximately

x0 ≃ Rs cos(θ) (12)

y0 ≃ Rs sin(θ) (13)

where the very thin-film thickness between the shaft and pads has
been neglected. Equations (12) and (13) are solved for cos(θ) and
sin(θ), which are then substituted into Eqs. (8)–(11) to obtain
Total perturbed displacements of the pad surface due to pad

tilting and pivot displacements:

Δxp ,totpj(x, y) = −
Δδpbj

Rs

x0(y0 cos θ
j
p − x0 sin θjp)

{ }

+
Δppbj

R2
s

x0(x0 cos θ
j
p + y0 sin θjp)

{ }
(14)

Δyp ,totpj(x, y) = −
Δδpbj

Rs

y0(y0 cos θp
j − x0 sin θp

j)

{ }

+
Δppbj

Rs
2 y0(x0 cos θp

j + y0 sin θp
j)

{ }
(15)

Total perturbed displacements of the journal surface due to shaft
translational displacements:

Δxs,totp(x, y) =
x0
R2
s

(Δxpbx0 + Δypby0) (16)

Δys,totp(x, y) =
y0
R2
s

(Δxpbx0 + Δypby0) (17)

Equations (14)–(17) provide the change in the pad and journal
nodal coordinates that result from perturbing the journal, pads,
and pivots.
The displacements for each perturbation are imposed on the fluid

film interface boundaries in the CFD model, which solves for pres-
sures, forces, and moments needed to determine the stiffness and
damping coefficients.
Displacements in the z-direction are ignored due to their minor

influence on the film thickness and for the preservation of the
mesh’s (orthogonal) quality. Each component perturbation is substi-
tuted to the total perturbed displacement equations in order. The
total perturbation displacement of the shaft and pad motions is
applied at the interface boundaries between the shaft-pad and
fluid film. The resulting pressure distributions are then used to
obtain pad moments and reaction forces on the shaft and pad. The
moments and forces are then utilized to calculate the full stiffness

Fig. 4 Illustration of film thickness parameters at the equilib-
rium condition
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coefficient matrix, defined as follows:

(18)

kxx = −
Fs,x(+Δxpb) − Fs,x(−Δxpb)

2Δxpb
(19)

kyx = −
Fs,y(+Δxpb) − Fs,y(−Δxpb)

2Δxpb
(20)

kδjx = −
Mp

j(+Δxpb) −Mp
j(−Δxpb)

2Δxpb
, term in kδx Eq. (18) (21)

kpjx = −
Fp

j(+Δxpb) − Fp
j(−Δxpb)

2Δxpb
, term ink px in Eq. (18) (22)

kxy = −
Fs,x(+Δypb) − Fs,x(−Δypb)

2Δypb
(23)

kyy = −
Fs,y(+Δypb) − Fs,y(−Δypb)

2Δypb
(24)

kδjy = −
Mp

j(+Δypb) −Mp
j(−Δypb)

2Δypb
, term in kδy in Eq. (18) (25)

kpjy = −
Fp

j(+Δypb) − Fp
j(−Δypb)

2Δypb
, term ink py in Eq. (18) (26)

kxδj = −
Fs,x( + Δδpbj) − Fs,x( − Δδpbj)

2Δδpbj
, term in kxδ in Eq. (18) (27)

kyδj = −
Fs,y(+Δδpbj) − Fs,y(−Δδpbj)

2Δδpbj
, term inkyδ in Eq. (18) (28)

kδiδj = −
Mp

i(+Δδpbj) −Mp
i(−Δδpbj)

2Δδpbj
, term inkδδ in Eq. (18) (29)

kpiδj = −
Fp

i(+Δδpbj) − Fp
i(−Δδpbj)

2Δδpbj
, term in k pδ in Eq. (18) (30)

kxp
j = −

Fs,x(+Δppbj) − Fs,x(−Δppbj)
2Δppbj

, term inkxp in Eq. (18) (31)

kyp
j = −

Fs,y(+Δppbj) − Fs,y(−Δppbj)
2Δppbj

, term inkyp in Eq. (18) (32)

kδipj = −
Mp

i(+Δppbj) −Mp
i(−Δppbj)

2Δppbj
, term in kδp in Eq. (18)

(33)

kpipj = −
Fp

i(+Δppbj) − Fp
i(−Δppbj)

2Δppbj

−
Fpvt

i(+Δppbj) − Fpvt
i(−Δppbj)

2Δppbj
, term in k pp

(34)

2.2.2 Damping Coefficient. The full damping coefficient
matrix can be obtained from velocity perturbations (ΔẋpbT , ΔẏpbT ,
Δδ̇pbT , ΔṗTpb) of the shaft and pad degrees-of-freedom, similar to
the calculation of stiffness coefficients from position pertur-
bations. This requires 24 perturbations, involving both positive
and negative movements. The magnitude of the velocity perturba-
tion is 0.01Cl,bΩs for translational velocity perturbations and
0.001 deg Ωs for angular velocity perturbations. The velocity pertur-
bations are substituted into the perturbed velocity source terms of the
transport equations in the defined subdomains of the fluid film
(Fig. 1). The transport equations are the continuity, momentum,
and energy conservation equations in Eqs. (35), (37), and (39),
respectively. The perturbed velocity source term for each transport
equation canbewritten as given inEqs. (36), (38), and (40), assuming
that the sources from the velocity perturbation are distributed uni-
formly through the film thickness.
Continuity equation with the perturbed velocity source term:

∂
∂xi

(ρf ui) =
∑
j

sC
j (35)

sCj = −∂ρf
j

∂t
≃ −

ρl
he

j

∂he
j(x, y, z)
∂t

rl +
ρv
he

j

∂he
j(x, y, z)
∂t

(1 − rl)

( )

(36)

Momentum equation with the perturbed velocity source term:

∂
∂xj

(ρf uiuj) = −
∂ p′

∂xi
+

∂
∂xj

μeff
∂ui
∂xj

+
∂uj
∂xi

( )[ ]
+
∑
j

sM
j

(37)

sMj = −∂ρf ui
j

∂t
≃ −

ρlui
he

j

∂he
j(x, y, z)
∂t

rl +
ρvui
he

j

∂he
j(x, y, z)
∂t

(1 − rl)

( )

(38)

Energy equation with the perturbed velocity source term:

−
∂p
∂t

+
∂
∂xj

(ρf ujhtot) =
∂
∂xj

λf
∂Tf
∂xj

+
μt
Prt

∂hf
∂xj

( )
+

∂
∂xj

[ui(τij − ρf uiuj)]

+
∑
j

sE
j

(39)

sEj=−∂ρf htot
j

∂t
≃−

ρlCpTf
he

j

∂he
j(x,y,z)
∂t

rl+
ρvCpTf
he

j

∂he
j(x,y,z)
∂t

(1−rl)

( )

(40)

where he
j is the film thickness in the equilibrium condition. This

is defined after a coordinate transformation to the x–y coordinates
as

he
j(x, y, z) = Cl,p

j −
(Cl,p − Cl,b)

Rs
{x0 cos(θp

j) + y0 sin(θp
j)}

−
1
Rs

[{xse − pe
j cos(θp

j)}x0 + {yse − pe
j sin(θp

j)}y0]

− δe
j{y0 cos(θp

j) − x0 sin(θp
j)} − hs,TEe(x0, y0, z0)

− hp,TEe(x0, y0, z0) (41)

where

hs,TEe(x, y, z) =
1
Rs

[xs,TEe(x0, y0, z0)x0 + ys,TEe(x0, y0, z0)y0] (42)

Journal of Tribology JUNE 2019, Vol. 141 / 061703-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/tribology/article-pdf/141/6/061703/6778164/trib_141_6_061703.pdf?casa_token=dPlEBrdD

j80AAAAA:rkPkN
lR

ZqKj6Bw
D

jm
TO

C
Q

3JoI9w
X_AFet-N

m
8fix6A1xN

pPzIIL2w
qIeM

AfFL4im
gU

J5H
qsn by Texas A & M

 U
niversity user on 08 August 2023



hp,TEe(x, y, z) = −
1
Rs

[xp,TEe(x0, y0, z0)x0 + yp,TEe(x0, y0, z0)y0]

(43)

and xse, yse, δej, and pej are the equilibrium positions of the shaft and
pads, which are obtained from the static result of the CFD-solver
(Part I). The thermal expansion displacements from the finite

element analysis (FEA) solver in the static calculation are also
included in Eqs. (42) and (43). The time derivative of the film thick-
ness is also needed for the complete source terms for calculating the
damping coefficients. The velocity perturbations Δẋpb, Δẏpb,
Δδ̇pb

j
, andΔṗpbj are substituted into ẋse, ẏse, δ̇e

j
, and ṗe

j, which
appear in the time derivative of the film thickness Eq. (41) yielding

∂hje(x, y, z)
∂t

= −
1
Rs

{Δẋpb − Δṗpb cos(θjp)}x0 + {Δẏpb − Δṗpb sin(θjp)}y0 + Δδ̇pbRs{y0 cos(θjp) − x0 sin(θjp)}
[ ]

(44)

Each velocity perturbation is substituted into the perturbed veloc-
ity source term of the transport equations, and the resultant pad
moments and pad and journal reaction forces are utilized to calcu-
late the full damping coefficient matrix as in Eq. (45). The compo-
nents of the matrix are determined similarly with the calculation
method of the stiffness coefficient.

(45)

2.3 Frequency Reduced Dynamic Coefficient and Log
Decrement. Industry practice, i.e., API 617 standard, requires
reducing the large matrices of stiffness and damping coefficients
in Eqs. (18) and (45) to 2 × 2 matrices relating x and y transla-
tions of the journal. This is somewhat driven by the preponder-
ance of rotordynamics simulation codes that only accept the 2 × 2
matrices. The reduction is enabled by assuming the oscillation fre-
quency of the pads and journal. The most common practice is to
assume that the vibration frequency equals the spin frequency in
which case the coefficients are referred to as synchronously
reduced coefficients. The 2 × 2matrix forms for the TPJB coefficient
matrices are then used in rotordynamics codes to calculate stability,
critical speed, imbalance response, etc., of the rotor system.
The original journal-pad dynamic equilibrium equation is

[mbrg][q̈] + [cbrg][q̇] + [kbrg][q] = [Fbrg] (46)

where [kbrg] and [cbrg] are the full stiffness and damping coefficient
matrices with 12 × 12 dimensions, respectively. The [mbrg] is the
mass matrix including the shaft-pad mass and moment of inertia.

[mbrg] =
mJJ 0
0 mPP

[ ]
(47)

The subscript J denotes the shaft degrees-of-freedom and P indi-
cates the pad degrees-of-freedom. The pads and journal are assumed
to all vibrate with the common frequency ν, i.e.,

[q] =
qJ
qP

[ ]
= eiνt

�qJ
�qP

[ ]
(48)

which is typically selected as the spin frequency. In this case, the
coefficients are said to be “synchronously reduced.”
Substitution of Eq. (48) into Eq. (46) yields

ZJJ ZJP

ZPJ ZPP

[ ]
�qJ
�qP

[ ]
=

�FJ

0

[ ]
+ ν2

MJJ 0
0 0

[ ]
�qJ
�qP

[ ]
(49)

where

Z′
JJ = ZJJ − ZJPZPP

−1ZPJ (50)

ZJJ = iνcJJ + kJJ (51)

ZJP = iνcJP + kJP (52)

ZPJ = iνcPJ + kPJ (53)

ZPP = iνcPP + kPP − ν2mPP (54)

The bottom row of Eq. (49) is substituted into the top row to
obtain

−ν2mJJ�qJ + Z′
JJ�qJ = �FJ (55)

Substitution of Eq. (50) yields the journal motion equation

−ν2mJJ�qJ + iνĉJJ�qJ + k̂JJ�qJ = �FJ (56)

By comparing Eq. (55) to Eq. (56), the final synchronously
reduced dynamic coefficients can be written as in Eqs. (57) and
(58).

k̂JJ = real(Z′
JJ ) (57)

ĉJJ =
1
ν
imag(Z′

JJ ) (58)

Bearing performance is often characterized by determining the
log dec of a rigid (Jeffcott) rotor supported symmetrically on two
identical bearings. If λi is an eigenvalue of the Jeffcott rotor, the
log decrement is defined as

δdec,i =
2πξi�������
1 − ξ2i

√ (59)

ξi =
real(λi)
|λi| (60)

2.4 Calculation Procedure. Calculation of the dynamic coef-
ficients is performed with a CFD-solver and a dedicated MATLAB

code. For the sake of simplicity, the effects of pad deflections result-
ing from the perturbations are ignored, eliminating the need for the
FEA deflection solver employed in Part I. Thermal and centrifugal
force deformations of the pads and shaft are loaded at the initial
stage to include these effects for establishing static equilibrium
film thickness expressions about which perturbations occur.
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Figure 5 provides a flow diagram of the overall calculation pro-
cedure for obtaining the TPJB stiffness and damping coefficients.
The following is a further explanation of the diagram:

(1) All displacement (ΔxpbT , ΔypbT , Δδpb
T , ΔppbT ) and velocity

perturbations (ΔẋpbT , ΔẏpbT , Δδ̇pb
T
, ΔṗpbT ), including tran-

sitional and angular motions, are defined in the 1 × 24 pertur-
bation definition matrix.

(2) All of the CFD model-dependent variables (u, v, w, p,
rα, Tf , Ts, Tp, k, ω, γ) from the static equilibrium solution
(Part I) are imported as the initial values in order to accelerate
the convergence for each perturbation simulation. Like-
wise, the thermal and centrifugal induced displacements
of the pads, pivots, and journal (ΔXs,TEe, ΔXp ,TEe

1, . . . ,
ΔXp ,TEe

5) are imported from the FEA-solver’s static equilib-
rium solution. The equilibrium positions (xse, yse, δeT , pe

T )
are loaded from the CFD-solver in order to apply them to
the film thickness model of the perturbed velocity source
terms for calculating damping coefficients.

(3–4) The perturbation matrix ΔXprtrb is updated with the pertur-
bation on the current degree of freedom.

(5) The perturbation matrix ΔXprtrb is substituted into the total
perturbation displacement equations of the shaft and pad,
and the time derivative equation of the film thickness.

(6) The shaft ΔXs,totp and pad total perturbation displacement
vectors [ΔXp ,totp

1, . . . , ΔXp ,totp
5] are added with the shaft

total displacements Xs,e and the pad total displacements
[ΔXp ,e

1, . . . , ΔXp ,e
5] from the static equilibrium position

simulation. The summed displacements are imposed at the
interface boundaries ΔXs ,ibc, ΔX p,ibc

1, . . . , ΔXp ,ibc
5 between

the shaft-pad and fluid film for calculating the stiffness coeffi-
cient matrix. The equilibrium condition film thickness matrix
he, and the time derivative of the film thickness matrix dhe/dt
for velocity perturbations are substituted into the continuity,
momentum, and energy equations as source terms [sC, sM,
sE]. The resulting pressure and force results are then utilized
for calculating the damping coefficients.

(7) The prescribed displacement at the interface boundaries
ΔXs,ibc, ΔXp ,ibc

1, . . . , ΔXp ,ibc
5 and the source terms [sC, sM,

sE] in the subdomains are applied in the CFD-solver for
each perturbation. The resulting forces Fs,x, Fs,y, andFp

T

acting on the shaft and pads and moment Mp
T are then

calculated.
(8) The reaction forces on the shaft and pads Fs,x, Fs,y, andFp

T

and pad moments Mp
T are stored for each perturbation, and

steps (2)–(8) are repeated for all perturbations.
(9–10) The stored Fs,x, Fs,y,Fp

T , andMp
T are transferred to the

MATLAB code in which the full dynamic coefficient
matrices [kbrg] and [cbrg], synchronously reduced
dynamic coefficient matrices k̂JJ and ĉJJ , and log decre-
ments δdec are calculated.

3 Description of Reynolds Model for Calculation
of Dynamic Coefficient
As in the static case in Part I, a Reynolds solution is utilized to

benchmark the CFD results for the idealized without mixing effect
case. The dynamic coefficients from the Reynolds model are calcu-
lated in a manner similar to the CFD model. The Reynolds static
equilibrium results in Part I are utilized to form the reference state

Fig. 5 Calculation procedure for obtaining frequency reduced, TPJB stiffness, and damping coefficients
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about which the perturbations are taken to determine the dynamic
coefficients. In addition, the input parameters including operating
condition and rotor-bearing system dimension are given in Part I.
The perturbations cause changes in the film thickness distributions
that are utilized in the Reynolds model. Reaction forces and
moments are determined by integrating the predicted pressure distri-
butions resulting from the perturbations. The reaction forces on the
shaft and pads and moments on the pads are utilized to calculate
the stiffness coefficients. Velocity perturbations are substituted into
the film thickness time derivative term in the Reynolds equation to
calculate the damping coefficients. The major difference between
the CFD and Reynolds model is the governing equations for the
fluid film domain. The Reynolds model is derived by neglecting
the inertia effect from the transient term in the momentum equation,
the radial pressure distribution through the film thickness, and the
shaft curvature effect. Thus the transient term ∂ρfui/∂ t and convective
term ∂ρfuiuj/∂xj of the momentum equation for the perturbations are
ignored in the Reynolds model, where the convective term causes
the fluid inertia effect. The transient term ∂ρfCp,fTf/∂t in the energy
equation is also neglected for the perturbation calculations. Thus, it
is assumed that the temperature distribution remains at its static equi-
librium state as calculated in Part I, for all perturbations. This saves a
significant amount of computer time. It is a reasonable assumption to
neglect the transient term of the energy equation and transient and
convective terms of the momentum equation due to their small influ-
ences for very small perturbations.
The static results in Part I showed a high sensitivity to the MC in

the Reynolds model. This resulted since the MC of the Reynolds
model is an oversimplified approach to account for the complex
flow field occurring between the pads BP and in the pad entrances.
The following sections illustrate the effects that varying the mixing
MC has on the dynamic coefficients and includes comparisons with
the CFD results.

4 Dynamic Performance Results
4.1 Computational Fluid Dynamics—Reynolds Com-

parison for the “Without Mixing Effect” Condition. Simula-
tions results are presented for the “with mixing effect” and
“without mixing effect” conditions. The “with mixing effect” con-
dition means that the CFD and Reynolds models consider the
between pad BP regions, the former including detailed fluidic and
thermal models of the complex flow that occurs BP, and the latter
utilizing an approximate MC to establish pad inlet flow tempera-
tures by considering makeup and carryover flows. The “without
mixing effect” condition neglects consideration of the flow and
thermal conditions present BP and instead represents an idealized
condition where pad inlet flow temperatures are uniform along
the pad length and identical in both the CFD and Reynolds
models. This provides a validation check of the CFD model that
would be expected to closely agree with the Reynolds model for
the assumed idealized boundary conditions. Part I provides the
detailed descriptions of these two models. As in Part I, three
cases are considered for comparing the CFD and Reynolds
models results: (A) rigid pivots and no thermal deformations, (B)
flexible pivots, and (C) flexible pivots and thermal deformations.
This section presents simulation results for the “without mixing
effect” models and Sec. 4.2 provides simulation results for the
“with mixing effect” models. Figures 6–8 present nondimensional
stiffness, damping and log decrement versus speed comparisons,
including results from Reynolds models with both 2D and 3D
thermal solutions and from the CFD model.
The nondimensional stiffness (Kij) and damping (Cij) coefficients

are defined in terms of their dimensional counterparts (k̂ij, ĉij) by

Kij =
Cl,pk̂ij
W

, Cij =
Cl,pωsĉij

W
The rotor mass utilized in the Jeffcott rotor model for determining

log decrements is 1019 kg. The x and y log decrements are slightly

different as shown in Fig. 8 and result from the TPJB having differ-
ent stiffness and damping in the x and y directions.
The Reynolds models are indicated by symbols and the CFD

results by solid lines on the plots. The results confirm a closed
agreement between the CFD and Reynolds models results for the
idealized “without mixing effect” study. This is true for the condi-
tions represented by all cases: (A), (B), and (C).

Fig. 6 Nondimensional direct stiffness of “without mixing
effect” model: (a) case A, (b) case B, and (c) case C effects
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The discrepancies between the Reynolds and CFD models are
relatively small and most likely due to the simplifying assumptions
employed in the Reynolds model, including neglect of the transient
term ∂ρfui/∂t and convective terms ∂ρfuiuj/∂xj in the momentum
equation and the transient term ∂ρfCp,fTf/∂t in the energy equation.
The neglect of the convective and transient terms is confirmed to
be reasonable assumptions in the Reynolds model, based on the dis-
crepancies with the CFD results only being minor.

The following conclusions are based on the “without mixing
effect” model: (1) the CFD and Reynolds model results agree
very well supporting the accuracy of the CFD model for modeling
pad flows, (2) the nondimensional stiffness and damping coeffi-
cients increase monotonically with speed, (3) in contrast the log
decrement monotonically decreases with speed, (4) the nondimen-
sional direct stiffness and damping coefficients and the log decre-
ment decrease significantly for the with pivot flexibility case (B),

Fig. 7 Nondimensional direct damping of “without mixing
effect” model: (a) case A, (b) case B, and (c) case C effects

Fig. 8 Log decrement of “without mixing effect”model: (a) case
A, (b) case B, and (c) case C effects
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relative to the rigid pivot case (A), and (5) the nondimensional
direct stiffness and damping coefficients increase significantly for
the with pivot flexibility and thermal expansion case (C), relative
to the flexible pivot case (B).

4.2 Computational Fluid Dynamics—Reynolds
Comparison for the “With Mixing Effect” Condition. The
“with mixing effect” condition means that the CFD and Reynolds
models consider the between pad BP regions, the former including
detailed fluidic and thermal models of the complex flow that occurs
BP, and the latter utilizing an approximate MC to establish pad inlet
flow temperatures by considering makeup and carryover flows. The
Reynolds model has been widely used for the prediction of TPJB
stiffness and damping coefficients [1–8] due to its relatively low
computational time, presence in software regularly used in industry
and its validation with a limited number of experiments. Part I
showed that the predicted static response results for TPJB could
vary widely as the MC changes and deviate significantly from the
more sophisticated CFD model results. The MC is a model param-
eter that is left to the analyst to select based on limited experience.
In comparison, the CFD model that includes the complex flow and
thermal states between pads can remove the inaccuracy and uncer-
tainty of the MC approach. The following figures and discussion
compare the “Reynolds+MC” model with the CFD model
dynamic coefficients and log decrements, considering the cases:
(A) rigid pivots and no thermal deformations, (B) flexible pivots,
and (C) flexible pivots and thermal deformations.
Figure 9(a) corresponds to case A and shows a high sensitivity of

direct stiffness (Kxx) to the Reynolds model’s MC and that the CFD
Kxx are near the low MC Reynolds Kxx at low operating speeds
(<9000 rpm), and near the high MC Reynolds Kxx at higher operat-
ing speeds (>9000 rpm). Figure 9(b) corresponds to case B and
shows a medium sensitivity of direct stiffness (Kxx) to the Reynolds
model’s MC and that the CFD Kxx are near the lowMCReynoldsKxx

at all operating speeds. Figure 9(c) corresponds to case C and shows
a high sensitivity of direct stiffness (Kxx) to the Reynolds model’s
MC, and that the CFD Kxx are out of the range of values bracketed
by the low and high MC Reynolds models. The discrepancy
between the Reynolds and CFD models increases with increasing
speed and attains a maximum value of 68.0%.
Figure 10(a) corresponds to case A and shows a medium sensi-

tivity of direct stiffness (Kyy) to the Reynolds model’s MC and
that the CFD Kyy are near the high MC Reynolds Kyy at all operating
speeds. Figure 10(b) corresponds to case B and shows a small sen-
sitivity of direct stiffness (Kyy) to the Reynolds model’s MC and that
the CFD Kyy are near the low MC Reynolds Kyy at all operating
speeds. Figure 10(c) corresponds to case C and shows a high sensi-
tivity of direct stiffness (Kyy) to the Reynolds model’s MC and that
the CFD Kyy are out of the range of values bracketed by the low and
high MC Reynolds models. The discrepancy between the Reynolds
and CFD models increases with increasing speed and attains a
maximum value of 63.6%.
Figures 11 and 12 show the cross-coupled stiffness coefficients

(Kxy, Kyx), respectively, versus operating speed. Both cross-coupled
stiffness coefficients (Kxy, Kyx) are nearly zero in the case of no
thermal expansion and increase in magnitude as the operating
speed increases.
Figure 13(a) corresponds to case A and shows a high sensitivity

of direct damping (Cxx) to the Reynolds model’s MC and that the
CFD Cxx are near the low MC Reynolds Cxx at all operating
speeds. Figure 13(b) corresponds to case B and shows a medium
sensitivity of direct damping (Cxx) to the Reynolds model’s MC
and that the CFD Cxx are near the low MC Reynolds Cxx at all oper-
ating speeds. Figure 13(c) corresponds to case C and shows a low
sensitivity of direct damping (Cxx) to the Reynolds model’s MC
and that the CFD Cxx are out of the range of values bracketed by
the low and high MC Reynolds models. The discrepancy between
the Reynolds and CFD models increases with increasing speed
and attains a maximum value of 53.5%.

Figure 14(a) corresponds to case A and shows a high sensitivity
of direct damping (Cyy) to the Reynolds model’s MC and that the
CFD Cyy are near the low MC Reynolds Cyy at all operating
speeds. Figure 14(b) corresponds to case B and shows a medium
sensitivity of direct damping (Cyy) to the Reynolds model’s MC
and that the CFD Cyy are near the low MC Reynolds Cyy at all

Fig. 9 Nondimensional direct stiffness (Kxx) of the “with mixing
effect” model for (a) case A, (b) case B, and (c) case C
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operating speeds. Figure 14(c) corresponds to case C and shows a
low sensitivity of direct damping (Cyy) to the Reynolds model’s
MC and that the CFD Cyy are out of the range of values bracketed
by the low and high MC Reynolds models. The discrepancy
between the Reynolds and CFD models increases with increasing
speed and attains a maximum value of 48.1%.

Figures 15 and 16 show the cross-coupled damping coefficients
(Cxy, Cyx) versus speed. The values remain near zero for cases A
and B, but for case C, CFD is predicted to attain a level that
might significantly aid in stabilizing a rotor system. This is a

Fig. 10 Nondimensional direct stiffness (Kyy) of the “withmixing
effect” model for (a) case A, (b) case B, and (c) case C

Fig. 11 Nondimensional cross-coupled stiffness (Kxy) of the
“with mixing effect” model for (a) case A, (b) case B, and (c)
case C
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marked deviation from the Reynolds-MC model predictions that
stay near zero in case C.
The Reynolds model assumes a uniform film temperature in the

radial and axial direction at the pad inlet. However, there actually
exists a spatially varying film temperature distribution at the pad

inlet. The Reynolds zero radial temperature gradient assumption at
the pad inlet reduces the heating of the shaft by the film near the
pad inlet. This causes a significant difference in the shaft temperature
predictions by the Reynolds and CFDmethods. This in turn causes a
thinner film in the CFD model, which also causes a deviation
between the CFD and Reynolds dynamic coefficients. The better
description is presented in Part I, including plots of heat flux and

Fig. 12 Nondimensional cross-coupled stiffness (Kyx) of the
“with mixing effect” model for (a) case A, (b) case B, and (c)
case C

Fig. 13 Nondimensional direct damping (Cxx) of the “with
mixing effect” model for (a) case A, (b) case B, and (c) case C
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temperature distribution at the shaft surface. The key point is that the
Reynolds film temperature assumption is overly simplistic and leads
to large discrepancies compared with the CFD model.
Figures 17 and 18 show x and y mode log decrements versus

speed, considering CFD and Reynolds predictions for cases A, B,
and C. The log decrements are obtained from the eigenvalues of a

Jeffcott rotor of mass 1019 kg, supported symmetrically with two
identical TPJB, as given in Eqs. (53) and (54). Modal stability
increases with log decrement and is unstable for negative log decre-
ment values. The results show low sensitivity to MC with the Rey-
nolds model and generally slightly higher values for the CFD
model, compared with the Reynolds-MC model. Although the

Fig. 14 Nondimensional direct damping (Cyy) of the “with
mixing effect” model for (a) case A, (b) case B, and (c) case C

Fig. 15 Nondimensional cross-coupled damping (Cxy) of the
“with mixing effect” model for (a) case A, (b) case B, and (c)
case C
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CFD and Reynolds predicted log decrements are quite similar, this
result corresponds only to a simple Jeffcott rotor model and should
not be assumed to apply for more complex rotor systems. Figures 17
and 18 also show that log decrements can decrease considerably
when the model includes pivot flexibility.

5 Conclusions
This paper compares the conventional Reynolds model of a TPJB

to a new CFD-FSI model for calculation of stiffness and damping
coefficients and log decrements of Jeffcott rotor supported by the
TPJB. The Reynolds model along with the accompanying thin-film

Fig. 16 Nondimensional cross-coupled damping (Cyx) of the
“with mixing effect” model for (a) case A, (b) case B, and (c)
case C

Fig. 17 Log decrement (x-direction) of the “with mixing effect”
model for (a) case A, (b) case B, and (c) case C
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energy equation has provided excellent tools for predicting thin-film
pressures and temperatures in many areas of engineering. This has
been true as long as external and internal (dams, reliefs, etc.) bound-
ary conditions are specified accurately and in regions where a full
film exists. The Reynolds model relies on a zero-dimensional
mixing theory for the complex flow and heat transfer which

occurs BP to provide a uniform inlet temperature boundary condi-
tion at pad inlets. This is obviously very simplistic when compared
with the 3D thermal–fluid model employed by CFD in solving the
full Navier–Stokes and full energy equations BP. CFD has matured
to a point of being generally viewed as reliable and robust. The
improved accuracy provided by CFD for BP modeling will also
improve the accuracy of all ensuing predictions due to the highly
coupled, thermal–fluid–solid nature of the TPJB. In other words,
the CFD model provides more accuracy, especially in its treatment
of the complex flow and thermal states existing between pads BP
where cooler supply oil is injected and mixed with hot oil carryover.
The Reynolds model incorporates a MC to approximate the pad
inlet temperatures; however, this approach is shown to be overly
simplistic relative to CFD and has an inherent uncertainty in the
lack of reliable guidelines for selecting the MC. The CFD-FSI
approach presented is the first to include the solution of the 3D
Navier–Stokes equation for calculating the dynamic coefficients
of a TPJB. This approach includes the effects of 3D incompressible
multiphase flow, thermal–fluid, transitional turbulence flow,
thermal rotational shaft and pad motions, and thermal deformation
effect. The results include TPJB stiffness and damping coefficients
in full matrix and frequency (synchronous) reduced forms. Calcula-
tion of the stiffness and damping coefficients requires the initial
static solution presented in Part I followed by the perturbation solu-
tions described here in Part II. Detailed procedures were presented
for prescribing perturbed displacements at the interface boundaries
for calculating stiffness coefficients, and for including perturbed
velocity source terms in the transport equations for calculating the
damping coefficients.
The results of the “without mixing effect” simulations, which

ignored the BP flows, provided an initial confirmation of the valid-
ity of the CFD approach, in terms of the close agreement of the stiff-
ness and damping coefficients and log decrements, with the
Reynolds based predictions. The “with mixing effect” cases
included the BP regions in the CFD model and mixing coefficients
in the Reynolds model. The aim of both of these approaches is to
determine accurate temperature distributions at the pad inlets,
with the CFD approach providing a highly detailed and accurate
distribution and the Reynolds approach providing a bulk tempera-
ture approximation. The results showed that the stiffness and
damping coefficients may be highly sensitive to the MC value
used in the Reynolds model. Furthermore, the CFD predictions
may be close to the low (0.4) MC value results, close to the high
(1.0) MC value results, or even lie far outside of the results brack-
eted by the low and high MC values, when considering an entire
operating speed range (0–15,000 rpm).
In the “without mixing effect,” the close agreement between the

methods shown in Fig. 6 is consistent with applying the same (yet
artificial) boundary conditions in both methods. Meanwhile, the dis-
parity between the CFD and Reynolds predicted dynamic coeffi-
cients increase significantly when thermal expansion effects are
included (case C). This appears to result from the same trend in
the static equilibrium solutions presented in Part I. The film thick-
ness distribution experiences large changes when thermal expan-
sions of the pad and shaft are included in the model. These
changes may significantly affect film temperatures, local viscosities,
and dynamic coefficients. The decreased film thickness causes a
large increase in the stiffness and damping coefficients. This
effect is increased as the operating speed increases. The pivot stiff-
ness also has a significant effect on the dynamic coefficients and can
be widely varied depending on its geometric parameters and type. In
the results, it is difficult to distinguish which effect, thermal expan-
sion or pivot flexibility, has a greater effect on the dynamic coeffi-
cients. However, it is clear that both effects are very important for
accurately modeling TPJB dynamic force coefficients.
The use of the CFD-based approach presented for dynamic coef-

ficient prediction appears to be justified for highly critical machines,
based on the significant disparities between the CFD and
Reynolds-MC predicted results provided here, and the uncertainty
of the MCs. Future work will include developing hybrid

Fig. 18 Log decrement (y-direction) of the “with mixing effect”
model for (a) case A, (b) case B, and (c) case C
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CFD-Reynolds models and reducing computation time since the
present (walk clock) computation times are 14.4 h for the static
solution, and 35.8 additional hours for the dynamic coefficient solu-
tion, using 12-cores of a computer server based on the dual Intel
Xeon 2.5 GHz E5-2670 v2 10-core processors (TAMU High Per-
formance Research Computing Center).
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Nomenclature
h = film thickness, m
k = turbulent kinetic energy, m2/s2

p = Pressure, Pa
r = volume faction
u = mean fluid velocity, m/s
R = radius, m
F = reaction force generated by fluid, N
M = reaction moment generated by fluid, Nm
T = temperature, °C
W = applied load, N
ĉJJ = synchronously reduced damping coefficient matrix
k̂JJ = synchronously reduced stiffness coefficient matrix
cij = damping coefficient, Ns/m
hf = static enthalpy, J/kg

htot = mean total enthalpy, J/kg
kij = stiffness coefficient, N/m
pe = pad pivot position at equilibrium, m
xse = shaft x position at equilibrium, m
yse = shaft y position at equilibrium, m
Cl = clearance, m
Cp = specific heat, J/kg K
Fpvt = reaction force generated by pivot, N
SC = mass source per unit volume, kg/m3

SE = energy source per unit volume, J/m3s
SM = momentum source per unit volume, N/m3

δe = pad tilting angle at equilibrium, deg
δdec = log decrement
Δh = film thickness displacement, m
Δpe = pad pivot displacement at equilibrium, m
Δppb = pad perturbation pivot displacement at equilibrium, m
Δx = x mesh displacement at equilibrium, m

Δxpb = shaft perturbation displacement in x-direction at
equilibrium, m

Δxse = shaft x displacement at equilibrium, m
Δy = y mesh displacement at equilibrium, m

Δypb = shaft perturbation displacement in y-direction at
equilibrium, m

Δyse = shaft y displacement at equilibrium, m
Δδe = pad tilting angular displacement at equilibrium, deg
Δδpb = pad perturbation angular displacement at equilibrium, m

θp = center angle of pad, deg
λ = thermal conductivity, W/mK
μ = dynamic viscosity, Pa s
ν = synchronous frequency, 1/s
ρ = density, kg/m3

τ = molecular stress tensor, N/m2

ω = turbulent frequency, 1/s
ωs = rotating speed, rad/s
Ω = rotating speed, 1/s

[cbrg] = full damping coefficient matrix
[kbrg] = full stiffness coefficient matrix
[mbrg] = full mass matrix

Pr = Prandtl number

Subscripts

0 = initial nodal position
eff = effective
f = fluid film

ibc = interface boundary
l = Liquid
p = pad (or pivot)

pvt = pivot
s = shaft
t = turbulent

totp = total perturbation displacement
TE = thermal expansion
TEe = thermal expansion at equilibrium

v = vapor phase
α = vapor or liquid phase

Superscripts

j = pad number
ʹ = local coordinate
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