• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • About Us
  • Research
  • People
  • Publications
  • News
  • Contact Us

Vibration Control, Electromechanics and Flow Lab VCEF

Texas A&M University College of Engineering

A Transient Computational Fluid Dynamics, Phase Modulated, Multi-Frequency Approach for Impeller Rotordynamic Forces

Mortazavi, F., Palazzolo, A.

July 2019

Modern high performance turbomachines frequently operate in supercritical condition above their first critical speed, rendering these machines prone to rotordynamic instability. The American Petroleum Institute (API) standards require advanced simulation models for level II stability analysis of impellers. Such data are then incorporated into rotor-bearing vibration response models. Despite recent advancements in high fidelity, general modeling (i.e., three-dimensional viscous transient nonaxisymmetric model) of closed impeller rotordynamic forces, no such general model is available for open impellers, especially the centrifugal type. This paper extends the transient computational fluid dynamics (CFD) model previously used for closed impellers to open impellers. The recent model uses a phase modulated, multifrequency approach for enhanced computational efficiency and robustness. Results are validated against literature experiments at design and off-flow condition. The model is further applied to a spectrum of specific speeds to extract the dimensionless rotordynamic forces for each class of impellers at design and off-flow conditions. Such dimensionless force data can be used to estimate the rotordynamic forces of impellers with similar specific speed. Depending on specific speed and the relative flow coefficient, many of these impellers are found to be excited by forward or backward whirl. Strong interaction with rotating stall typically appears in the force data at off-flow condition. Simulations of the isolated leakage path model (ILPM) for equivalent closed impellers reveal similar bumps and dips associated with highly swirling inflow which naturally occurs at part flow condition.

 

A Transient Computational Fluid Dynamics, Phase Modulated, Multi-Frequency Approach for Impeller Rotordynamic Forces

Recent Publications

  • An improved preloaded Curvic coupling model for rotordynamic analyses
  • Beam Based Rotordynamics Modelling for Preloaded Hirth, Curvic and Butt Couplings
  • CFD Turbulence Model and Experimental Study for a Fontan Cavopulmonary Assist Device
  • Swirl Brake Design for Improved Rotordynamic Vibration Stability Based on CFD System Level Modeling
  • Transient Rotordynamic Thermal Bow (Morton Effect) Modeling in Flexure-Pivot Tilting Pad Bearing Systems

© 2016–2025 Vibration Control, Electromechanics and Flow Lab VCEF Log in

Texas A&M Engineering Experiment Station Logo
  • College of Engineering
  • Facebook
  • Twitter
  • State of Texas
  • Open Records
  • Risk, Fraud & Misconduct Hotline
  • Statewide Search
  • Site Links & Policies
  • Accommodations
  • Environmental Health, Safety & Security
  • Employment